In vivo comparative study of linear versus geometrically correct three-dimensional reconstruction of coronary arteries.

Although conventional linear 3-dimensional (3D) reconstruction of coronary arteries by intravascular ultrasound has been widely used for the assessment of plaque volume and progression; the volumetric error (VE) that is produced has not been adequately studied. Linear and geometrically correct 3D reconstruction was applied in 16 coronary arterial segments from 9 patients. Using geometrically correct reconstruction as reference, VE was assessed in 1-mm-long arterial slices. Although for the entire length of the coronary arteries VEs for lumen, external elastic membrane (EEM), and intima-media volumes were minimal (lumen VE 0.4%, -0.8 to 1.8; EEM VE 0.3%, -0.9 to 1.9; intima-media VE 0.4%, -1.4 to 2.2), the VE in each arterial slice exhibited a large variation from -15.6% to 36.2% for lumen volume, from -12.9% to 33.1% for EEM volume, and from -17.2% to 46.7% for intima-media volume, suggesting that linear reconstruction over- or underestimates the true arterial volumes. Lumen VE, EEM VE, and intima-media VE were also significantly higher in curved arterial subsegments than in relatively straight arterial subsegments (p <0.05). In conclusion, in highly curved arterial subsegments, the VE that is produced by linearly stacking the intravascular ultrasound images may be not negligible. Geometrically correct reconstruction of coronary arteries provides more reliable arterial reconstructions and plaque volume measurements. It is anticipated that clinical application of this technique will contribute to more accurate follow-up of the progression of atherosclerosis and assessment of arterial remodeling.

[1]  C J Slager,et al.  ECG-gated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. , 1997, Circulation.

[2]  N. Maglaveras,et al.  In-vivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography , 2006, Coronary artery disease.

[3]  D. McPherson,et al.  The effect of vascular curvature on three-dimensional reconstruction of intravascular ultrasound images , 1996, Annals of Biomedical Engineering.

[4]  Azita Tajaddini,et al.  Automated three-dimensional assessment of coronary artery anatomy with intravascular ultrasound scanning. , 2003, American heart journal.

[5]  Paul Schoenhagen,et al.  Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. , 2004, JAMA.

[6]  Impact of vessel curvature on the accuracy of three-dimensional intravascular ultrasound: validation by phantoms and coronary segments. , 2002, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[7]  Milan Sonka,et al.  Reproducibility of coronary lumen, plaque, and vessel wall reconstruction and of endothelial shear stress measurements in vivo in humans , 2003, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[8]  Paul Schoenhagen,et al.  Intravascular ultrasound in cardiovascular medicine. , 2006, Circulation.

[9]  A. Wahle,et al.  Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodeling, and In-Stent Restenosis in Humans: In Vivo 6-Month Follow-Up Study , 2003, Circulation.

[10]  Yiannis S Chatzizisis,et al.  In-vivo accuracy of geometrically correct three-dimensional reconstruction of human coronary arteries: is it influenced by certain parameters? , 2006, Coronary artery disease.

[11]  Michael G. Strintzis,et al.  A novel active contour model for fully automated segmentation of intravascular ultrasound images: In vivo validation in human coronary arteries , 2007, Comput. Biol. Medicine.

[12]  Raimund Erbel,et al.  Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. , 2006, JAMA.

[13]  N Bom,et al.  On the IVUS plaque volume error in coronary arteries when neglecting curvature. , 2000, Ultrasound in medicine & biology.

[14]  Milan Sonka,et al.  Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography-methods and validation , 1999, IEEE Transactions on Medical Imaging.

[15]  P. Serruys,et al.  True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. , 2000, Circulation.