Top-Down Shape Abstraction Based on Greedy Pole Selection

Motivated by the fact that the medial axis transform is able to encode the shape completely, we propose to use as few medial balls as possible to approximate the original enclosed volume by the boundary surface. We progressively select new medial balls, in a top-down style, to enlarge the region spanned by the existing medial balls. The key spirit of the selection strategy is to encourage large medial balls while imposing given geometric constraints. We further propose a speedup technique based on a provable observation that the intersection of medial balls implies the adjacency of power cells (in the sense of the power crust). We further elaborate the selection rules in combination with two closely related applications. One application is to develop an easy-to-use ball-stick modeling system that helps non-professional users to quickly build a shape with only balls and wires, but any penetration between two medial balls must be suppressed. The other application is to generate porous structures with convex, compact (with a high isoperimetric quotient) and shape-aware pores where two adjacent spherical pores may have penetration as long as the mechanical rigidity can be well preserved.

[1]  Tong-Yee Lee,et al.  Skeleton extraction by mesh contraction , 2008, SIGGRAPH 2008.

[2]  Tamy Boubekeur,et al.  A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data , 2018, Comput. Graph. Forum.

[3]  Tamy Boubekeur,et al.  Sphere-Meshes , 2013, ACM Trans. Graph..

[4]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[5]  A. Fine Recent trends. , 2003, Managed care quarterly.

[6]  Daniel Cohen-Or,et al.  Structure-aware shape processing , 2013, Eurographics.

[7]  Daniel Cohen-Or,et al.  Sketching in Gestalt Space: Interactive Shape Abstraction through Perceptual Reasoning , 2018, Comput. Graph. Forum.

[8]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[9]  Sen Zhang,et al.  Capacity constrained blue-noise sampling on surfaces , 2016, Comput. Graph..

[10]  Anming Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-Micro Letters.

[11]  Marc Alexa,et al.  FiberMesh: designing freeform surfaces with 3D curves , 2007, ACM Trans. Graph..

[12]  Alexander M. Bronstein,et al.  Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment , 2016, Comput. Graph. Forum.

[13]  Erin W. Chambers,et al.  Erosion thickness on medial axes of 3D shapes , 2016, ACM Trans. Graph..

[14]  Radomír Mech,et al.  Stress relief , 2012, ACM Trans. Graph..

[15]  Tao Ju,et al.  Voxel cores , 2018, ACM Trans. Graph..

[16]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[17]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[18]  Caiming Zhang,et al.  Q-MAT , 2015, ACM Trans. Graph..

[19]  Robert B. Fisher,et al.  Class-based recognition of 3D objects represented by volumetric primitives , 1997, Image Vis. Comput..

[20]  T. Igarashi,et al.  Plushie: an interactive design system for plush toys , 2007, ACM Trans. Graph..

[21]  Yuxin Mao,et al.  Generating hybrid interior structure for 3D printing , 2018, Comput. Aided Geom. Des..

[22]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[23]  Shigeru Muraki,et al.  Volumetric shape description of range data using “Blobby Model” , 1991, SIGGRAPH.

[24]  Yong-Liang Yang,et al.  Scale-aware black-and-white abstraction of 3D shapes , 2018, ACM Trans. Graph..

[25]  Niloy J. Mitra,et al.  Abstraction of man-made shapes , 2009, ACM Trans. Graph..

[26]  Takeo Igarashi,et al.  Beady: interactive beadwork design and construction , 2011, SA '11.

[27]  Martin P. Bendsøe Topology Optimization , 2009, Encyclopedia of Optimization.

[28]  Marc Alexa,et al.  FiberMesh: designing freeform surfaces with 3D curves , 2007, SIGGRAPH 2007.

[29]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[30]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[31]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[32]  Laurent Younes The Medial Axis , 2019, Shapes and Diffeomorphisms.

[33]  An‐Hui Lu,et al.  Porous materials for carbon dioxide capture , 2013 .

[34]  Hongyuan Wang,et al.  Skeleton growing and pruning with bending potential ratio , 2011, Pattern Recognit..

[35]  Duygu Ceylan,et al.  SAFE: Structure‐aware facade editing , 2014, Comput. Graph. Forum.

[36]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[37]  Jun Wu,et al.  Optimization and projection of coated structures with orthotropic infill material , 2018, ArXiv.

[38]  F. Chazal,et al.  The λ-medial axis , 2005 .

[39]  Edgar A. Ramos,et al.  Medial axis approximation and unstable flow complex , 2006, SCG '06.

[40]  Ligang Liu,et al.  Cost-effective printing of 3D objects with skin-frame structures , 2013, ACM Trans. Graph..

[41]  Marco Attene,et al.  Hierarchical mesh segmentation based on fitting primitives , 2006, The Visual Computer.

[42]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[43]  Hans-Peter Seidel,et al.  Hyperbolic Hausdorff Distance for Medial Axis Transform , 2001, Graph. Model..

[44]  Punam K. Saha,et al.  Skeletonization : Theory, Methods, and Applications , 2017 .

[45]  Romain Marie,et al.  The Delta Medial Axis: A fast and robust algorithm for filtered skeleton extraction , 2016, Pattern Recognit..

[46]  Ivan Viola,et al.  Rule-based method for automatic scaffold assembly from 3D building models , 2013, Comput. Graph..

[47]  Yizhou Yu,et al.  Medial Meshes for Volume Approximation , 2013, ArXiv.

[48]  Nicholas M. Patrikalakis,et al.  Computation of the Medial Axis Transform of 3-D polyhedra , 1995, Symposium on Solid Modeling and Applications.

[49]  Dominique Attali,et al.  Modeling noise for a better simplification of skeletons , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[50]  W. Walthen-Dunn A Transformation for Extracting New De scriptors of Shape ' , in , 2017 .

[51]  Anil K. Jain,et al.  Learning 2D shape models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[52]  Daniel Cohen-Or,et al.  Build-to-last , 2014, ACM Trans. Graph..

[53]  Daniel Cohen-Or,et al.  Conjoining Gestalt rules for abstraction of architectural drawings , 2011, ACM Trans. Graph..

[54]  Andrew J. Hanson,et al.  Hyperquadrics: Smoothly deformable shapes with convex polyhedral bounds , 1988, Comput. Vis. Graph. Image Process..

[55]  Satoshi Matsuoka,et al.  Teddy: a sketching interface for 3D freeform design , 2006, SIGGRAPH Courses.

[56]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[57]  Niloy J. Mitra,et al.  Surface perception of planar abstractions , 2013, TAP.

[58]  A. Jakus,et al.  3D-printing porosity: A new approach to creating elevated porosity materials and structures. , 2018, Acta biomaterialia.

[59]  Charlie C. L. Wang,et al.  Current and future trends in topology optimization for additive manufacturing , 2018 .

[60]  M. Pauly,et al.  Discrete scale axis representations for 3D geometry , 2010, ACM Trans. Graph..

[61]  Tamal K. Dey,et al.  Approximating the Medial Axis from the Voronoi Diagram with a Convergence Guarantee , 2003, Algorithmica.

[62]  Leonidas J. Guibas,et al.  Learning Shape Abstractions by Assembling Volumetric Primitives , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Charlie C. L. Wang,et al.  Self-supporting rhombic infill structures for additive manufacturing , 2016, Comput. Aided Des..