DCU's Experiments for the NTCIR-8 IR4QA Task

We describe DCU's participation in the NTCIR-8 IR4QA task [16]. This task is a cross-language information retrieval(CLIR) task from English to Simplified Chinese which seeks to provide relevant documents for later cross language question answering (CLQA) tasks. For the IR4QA task, we submitted 5 official runs including two monolingual runs and three CLIR runs. For the monolingual retrieval we tested two information retrieval models. The results show that the KL-Divergence language model method performs better than the Okapi BM25 model for the Simplified Chinese retrieval task. This agrees with our previous CLIR experimental results at NTCIR-5. For the CLIR task, we compare query translation and document translation methods. In the query translation based runs, we tested a method for query expansion from external resource (QEE) before query translation. Our result for this run is slightly lower than the run without QEE. Our results show that the document translation method achieves 68.24% MAP performance compared to our best query translation run. For the document translation method, we found that the main issue is the lack of named entity translation in the documents since we do not have a suitable parallel corpus for training data for the statistical machine translation system. Our best CLIR run comes from the combination of query translation using Google translate and the KL-Divergence language model retrieval method. It achieves 79.94% MAP relative to our best monolingual run.

[1]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[2]  Stephen E. Robertson,et al.  Okapi at TREC-4 , 1995, TREC.

[3]  Karen Sparck Jones,et al.  Okapi at TREC{7: automatic ad hoc, ltering, VLC and interactive track , 1999 .

[4]  Milad Shokouhi,et al.  Query Expansion Using External Evidence , 2009, ECIR.

[5]  Yang Xu,et al.  Query dependent pseudo-relevance feedback based on wikipedia , 2009, SIGIR.

[6]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[7]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[8]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[9]  Noriko Kando,et al.  Overview of the NTCIR-7 ACLIA IR4QA Task , 2008, NTCIR.

[10]  Junlin Zhang,et al.  ISCAS in English-Chinese CLIR at NTCIR-5 , 2005, NTCIR.

[11]  James Allan,et al.  A comparison of statistical significance tests for information retrieval evaluation , 2007, CIKM '07.

[12]  Hermann Ney,et al.  Phrase-Based Statistical Machine Translation , 2002, KI.

[13]  Noriko Kando,et al.  Overview of NTCIR-8 ACLIA IR4QA , 2010, NTCIR.

[14]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[15]  K. Sparck Jones,et al.  Simple, proven approaches to text retrieval , 1994 .

[16]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[17]  Stephen E. Robertson,et al.  Okapi at TREC-7: Automatic Ad Hoc, Filtering, VLC and Interactive , 1998, TREC.

[18]  Hermann Ney,et al.  Improved backing-off for M-gram language modeling , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[19]  Christopher D. Manning,et al.  Optimizing Chinese Word Segmentation for Machine Translation Performance , 2008, WMT@ACL.

[20]  Andy Way,et al.  MaTrEx: The DCU MT System for WMT 2008 , 2008, WMT@ACL.