Estimation of Chaotic Thresholds for the Recently Proposed rotating Pendulum

In this paper, we investigate the nonlinear behavior of the recently proposed rotating pendulum which is a cylindrically nonlinear system with irrational type having smooth and discontinuous characteristics depending on the value of a smoothness parameter. We introduce a cylindrical approximate system whose analytical solutions can be obtained successfully to reflect the nature of the original system without the barrier of irrationalities. Furthermore, Melnikov method is employed to detect the chaotic thresholds for the homoclinic orbits of the second-type, a pair of homoclinic orbits of the first and second-type and the double heteroclinic orbits under the perturbation of viscous damping and external harmonic forcing within the smooth regime. Numerical simulations show the efficiency of the proposed method and the results presented herein this paper demonstrate the predicated chaotic attractors of pendulum-type, SD-type and their mixture depending on the coupling of the nonlinearities.

[1]  Chen Yushu,et al.  A novel smooth and discontinuous oscillator with strong irrational nonlinearities , 2012 .

[2]  Q. J. Cao,et al.  The Study on the Midspan Deflection of a Beam Bridge under Moving Loads Based on SD oscillator , 2012, Int. J. Bifurc. Chaos.

[3]  M. Ahmadian,et al.  Nonlinear oscillation analysis of a pendulum wrapping on a cylinder , 2012 .

[4]  Hang Ning,et al.  A Rotating Pendulum Linked by an Oblique Spring , 2011 .

[5]  B. Missal,et al.  Mechanical experiments about pendulum support of vacuum vessel W7-X , 2008 .

[6]  Celso Grebogi,et al.  The limit case response of the archetypal oscillator for smooth and discontinuous dynamics , 2008 .

[7]  Seonghee Jeong,et al.  Wheeled inverted pendulum type assistant robot: design concept and mobile control , 2008, Intell. Serv. Robotics.

[8]  Celso Grebogi,et al.  Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  L. Lobas,et al.  Theory of inverted pendulum with follower force revisited , 2007 .

[10]  Jaume Llibre,et al.  Horseshoes Near homoclinic orbits for Piecewise Linear Differential Systems in R3 , 2007, Int. J. Bifurc. Chaos.

[11]  F. L. Chernousko,et al.  Time-optimal swing-up feedback control of a pendulum , 2006 .

[12]  Celso Grebogi,et al.  Archetypal oscillator for smooth and discontinuous dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Yang Liang,et al.  Parametric Identification of a Base-Excited Single Pendulum , 2006 .

[14]  Arthur Stinner,et al.  The Pendulum: Scientific, Historical, Philosophical and Educational Perspectives Part III , 2006 .

[15]  A. M. Formal'skii,et al.  An inverted pendulum on a fixed and a moving base , 2006 .

[16]  Pei Yu,et al.  Computation of the normal forms for general M-DOF systems using multiple time scales. Part I: autonomous systems , 2005 .

[17]  Yoon Keun Kwak,et al.  Dynamic Analysis of a Nonholonomic Two-Wheeled Inverted Pendulum Robot , 2005, J. Intell. Robotic Syst..

[18]  Robert J. Whitaker,et al.  Types of Two-Dimensional Pendulums and Their Uses in Education , 2004 .

[19]  Victor Z. Enolskii,et al.  Double Pendulum and θ -Divisor , 2003, J. Nonlinear Sci..

[20]  M. R. Matthews How Pendulum Studies Can Promote Knowledge of the Nature of Science , 2001 .

[21]  I. Schwartz,et al.  Invariant Manifolds, Nonclassical Normal Modes, and Proper Orthogonal Modes in the Dynamics of the Flexible Spherical Pendulum , 2001 .

[22]  A. Zubrzycki,et al.  The Global bifurcations that lead to Transient tumbling Chaos in a Parametrically Driven Pendulum , 2000, Int. J. Bifurc. Chaos.

[23]  Mariusz M Holicke,et al.  MELNIKOV'S METHOD AND STICK–SLIP CHAOTIC OSCILLATIONS IN VERY WEAKLY FORCED MECHANICAL SYSTEMS , 1999 .

[24]  Andrew Y. T. Leung,et al.  Bifurcation and Chaos in Engineering , 1998 .

[25]  Kazuyuki Yagasaki,et al.  CONTROLLING CHAOS IN A PENDULUM SUBJECTED TO FEEDFORWARD AND FEEDBACK CONTROL , 1997 .

[26]  W. K. Lee,et al.  Chaotic Dynamics of a Harmonically Excited Spring-Pendulum System with Internal Resonance , 1997 .

[27]  Keng-Huat Kwek,et al.  Chaotic dynamics and subharmonic bifurcations in a non-linear system , 1996 .

[28]  D. Fox,et al.  Distinguishing the transition to chaos in a spherical pendulum. , 1995, Chaos.

[29]  P. Richter,et al.  Application of Greene's method and the MacKay residue criterion to the double pendulum , 1994 .

[30]  Holger R. Dullin,et al.  Melnikov's method applied to the double pendulum , 1994 .

[31]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[32]  Lawrence N. Virgin,et al.  An empirical study of the stability of periodic motion in the forced spring-pendulum , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[33]  P. J. Bryant,et al.  Breakdown to chaotic motion of a forced, damped, spherical pendulum , 1993 .

[34]  Maorong Zou Kolmogorov's condition for the square potential spherical pendulum , 1992 .

[35]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[36]  Li Ji-bin,et al.  Fourier series of rational fractions of Jacobian elliptic functions , 1988 .

[37]  D. Tritton,et al.  Ordered and chaotic motion of a forced spherical pendulum , 1986 .

[38]  John W. Miles,et al.  Resonant motion of a spherical pendulum , 1984 .

[39]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[40]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[41]  R. G. Langebartel Fourier Expansions of Rational Fractions of Elliptic Integrals and Jacobian Elliptic Functions , 1980 .

[42]  Jerrold E. Marsden,et al.  Bifurcation to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis , 1978, Autom..

[43]  Y. Narkis On the stability of a spring-pendulum , 1977 .

[44]  John W. Miles,et al.  Stability of forced oscillations of a spherical pendulum , 1962 .

[45]  M. Wiercigroch,et al.  A novel smooth and discontinuous oscillator with strong irrational nonlinearities , 2012 .

[46]  E. Adelberger,et al.  Physics of Fundamental Symmetries and Interactions {PSI2010 A torsion pendulum based axion search , 2011 .

[47]  田瑞兰,et al.  Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator , 2010 .

[48]  Wanda Szemplinska-Stupnicka,et al.  The Oscillation-rotation attractors in the Forced Pendulum and their Peculiar Properties , 2002, Int. J. Bifurc. Chaos.

[49]  Arun R. Srinivasa,et al.  Effect of Nonlinear Stiffness on the Motion of a Flexible Pendulum , 2002 .

[50]  Ioannis T. Georgiou,et al.  On the Global Geometric Structure of the Dynamics of the Elastic Pendulum , 1999 .

[51]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[52]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[53]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .