Hydrogen Evolution Electrocatalysis on AgPd(111) Alloys

[1]  B. Hayden,et al.  The Hydrogen Evolution Reaction and Hydrogen Oxidation Reaction on thin film PdAu alloy surfaces. , 2010, Physical chemistry chemical physics : PCCP.

[2]  Heather L. Tierney,et al.  Atomic-scale geometry and electronic structure of catalytically important pd/au alloys. , 2010, ACS nano.

[3]  Donghai Mei,et al.  Hydrogenation of acetylene–ethylene mixtures over Pd and Pd–Ag alloys: First-principles-based kinetic Monte Carlo simulations , 2009 .

[4]  X. Gonze,et al.  Demixing processes in AgPd superlattices , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  T. Jacob,et al.  Hydrogen adsorption on Pd-containing Au(111) bimetallic surfaces. , 2009, Physical chemistry chemical physics : PCCP.

[6]  R. Behm,et al.  Formation, stability and CO adsorption properties of PdAg/Pd(111) surface alloys , 2009 .

[7]  L. Kibler,et al.  Dependence of electrocatalytic activity on film thickness for the hydrogen evolution reaction of Pd overlayers on Au(111) , 2008 .

[8]  O. Løvvik,et al.  Reversed surface segregation in palladium-silver alloys due to hydrogen adsorption , 2008 .

[9]  D. Kolb,et al.  Unique activity of Pd monomers: hydrogen evolution at AuPd(111) surface alloys. , 2008, Physical chemistry chemical physics : PCCP.

[10]  A. Ruban,et al.  Double-segregation effect in AgxPd1-x/Ru(0001) thin film nanostructures , 2008 .

[11]  H. Nakanishi,et al.  First principles study of hydrogen atom adsorption and diffusion on Pd3Ag(111) surface and in its subsurface , 2008 .

[12]  R. Theissmann,et al.  Bifunctional electrocatalysis in pt-ru nanoparticle systems. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[13]  J. Nørskov,et al.  Size-specific chemistry on bimetallic surfaces: a combined experimental and theoretical study. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  U. Stimming,et al.  Reactivity of monolayers and nano-islands of palladium on Au(1 1 1) with respect to proton reduction , 2007 .

[15]  K. Soliman,et al.  Variation of the potential of zero charge for a silver monolayer deposited onto various noble metal single crystal surfaces , 2007 .

[16]  Junliang Zhang,et al.  Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. , 2007, The journal of physical chemistry. B.

[17]  J. Nørskov,et al.  Large-scale, density functional theory-based screening of alloys for hydrogen evolution , 2007 .

[18]  B. Johansson,et al.  Theoretical investigation of bulk ordering and surface segregation in Ag-Pd and other isoelectornic alloys , 2007 .

[19]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[20]  M. Ropo,et al.  Ab initio study of the geometric dependence of AgPd surface segregation , 2006 .

[21]  N. Marković,et al.  Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. , 2006, Journal of the American Chemical Society.

[22]  H. Baltruschat,et al.  Electrochemical characterization of gold stepped surfaces modified with Pd. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[23]  Börje Johansson,et al.  The chemical potential in surface segregation calculations : AgPd alloys , 2006 .

[24]  Sushil Adhikari,et al.  Hydrogen Membrane Separation Techniques , 2006 .

[25]  Cheol-Woo Yi,et al.  The Promotional Effect of Gold in Catalysis by Palladium-Gold , 2005, Science.

[26]  R. Adzic,et al.  Growth of RuO2 by electrochemical and gas-phase oxidation of an Ru(0001) surface , 2004 .

[27]  Younan Xia,et al.  Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen. , 2004, Journal of the American Chemical Society.

[28]  Hong He,et al.  Novel Pd promoted Ag/Al2O3 catalyst for the selective reduction of NOx , 2003 .

[29]  D. Kolb,et al.  First observation of an ordered sulfate adlayer on Ag single crystal electrodes , 2003 .

[30]  M. Eikerling,et al.  Hydrogen Evolution at a Single Supported Nanoparticle: A Kinetic Model , 2003 .

[31]  R. A. Olsen,et al.  Density functional calculations of hydrogen adsorption on palladium–silver alloy surfaces , 2003 .

[32]  A. M. El-Aziz,et al.  Influence of steps on the electrochemical oxidation of CO adlayers on Pd(111) and on Pd films electrodeposited onto Au(111) , 2002 .

[33]  H. Züchner,et al.  Hydrogen diffusion in palladium based f.c.c. alloys , 2002 .

[34]  R. A. Olsen,et al.  Density functional calculations on hydrogen in palladium–silver alloys , 2002 .

[35]  S. Yau,et al.  In Situ Scanning Tunneling Microscopy of (Bi)sulfate, Oxygen, and Iodine Adlayers Chemisorbed on a Well-Defined Ru(001) Electrode Prepared in a Non-Ultrahigh-Vacuum Environment , 2002 .

[36]  R. Behm,et al.  The Role of Atomic Ensembles in the Reactivity of Bimetallic Electrocatalysts , 2001, Science.

[37]  Jia X Wang,et al.  In Situ X-Ray Reflectivity and Voltammetry Study of Ru(0001) Surface Oxidation in Electrolyte Solutions , 2001 .

[38]  L. Wan,et al.  In situ scanning tunneling microscopy of adsorbed sulfate on well-defined Pd(111) in sulfuric acid solution , 2000 .

[39]  P. Wouda,et al.  STM study of the (111) and (100) surfaces of PdAg , 1998 .

[40]  L. Opara,et al.  Hydrogen-diffusion in Pd1−xAgx (0⩽x⩽1) , 1997 .

[41]  V. Galvita,et al.  Non-Faradaic catalysis: the case of CO oxidation over Ag-Pd alloy electrode in a solid oxide electrolyte cell , 1997 .

[42]  R. Antón,et al.  Auger electron spectroscopy investigations of segregation in AuPd and AgPd alloy thin films , 1993 .

[43]  F. Reniers,et al.  Auger electron spectroscopy study of the surface segregation in silver–palladium alloys , 1991 .