The dipole moment function and vibrational transition intensities of OH

The relative intensities of nine pairs of rovibrational transitions of OH in the v=1←0 fundamental have been measured by flash kinetic infrared absorption spectroscopy. Each pair of transitions originates from a common rotational and spin–orbit state, so that relative intensities are independent of the OH number density and quantum state distribution. The relative intensities are strongly J dependent and this dependence provides detailed information about the shape of the OH dipole moment function, μ(r), and hence the absolute infrared transition strengths. In an accompanying paper we present the theoretical basis for extracting μ(r), for an open shell diatomic like OH, from relative infrared intensities and permanent dipole moment measurements (Peterson et al.). In this work we implement those ideas and determine the OH dipole moment function to be: μ(r)=1.6498(6) D+0.561(32) D/A (r−re )−0.75(17) D/A2 (r−re )−1.5(11) D/A3(r−re )3. The accuracy of μ(r) is excellent near re (re =0.970 A), since the data us...

[1]  H. Johnston,et al.  Gas-phase ultraviolet absorption spectrum of nitric acid vapor , 1973 .

[2]  G. W. Harris,et al.  Pressure broadening of the lowest rotational transition of OH studied by laser magnetic resonance , 1979 .

[3]  E. Kruus,et al.  The interaction of O(1D2) with HCl: The initial vibrational distributions in the OH(2Π) produced by chemical reaction, and the HCl(1Σ+) produced by E–V energy transfer , 1988 .

[4]  D. Singleton,et al.  Laser photolysis of HNO3 at 222 nm: direct determination of the primary quantum yield of OH , 1986 .

[5]  H. Werner,et al.  Molecular properties from MCSCF‐SCEP wave functions. I. Accurate dipole moment functions of OH, OH−, and OH+ , 1983 .

[6]  J. D'Incan,et al.  Experimental oscillator strengths in the infrared vibration--rotation spectrum of the hydroxyl radical , 1973 .

[7]  R. P. Lowe,et al.  An empirical determination of the dipole moment function of OH(X 2Π) , 1988 .

[8]  A. B. Meinel,et al.  OH Emission Bands in the Spectrum of the Night Sky. II. , 1950 .

[9]  R. Zare,et al.  Zero‐field level crossing and optical radio‐frequency double resonance studies of the A2Σ+ states of OH and OD , 1973 .

[10]  Pavel Rosmus,et al.  Theoretical transition probabilities for the OH Meinel system , 1986 .

[11]  H. J. Kostkowski,et al.  Chemically Induced Vibrational Excitation: Hydroxyl Radical Emission in the 1–3 Micron Region Produced by the H+O3 Atomic Flame , 1960 .

[12]  D. Nesbitt,et al.  A simple F-center laser spectrometer for continuous single frequency scans , 1988 .

[13]  D. Yaron,et al.  On the dipole moment functions of ClO and OH , 1988 .

[14]  J. A. Coxon,et al.  Rotational analysis of hydroxyl vibration–rotation emission bands: Molecular constants for OH X2Π, 6 ≤ ν ≤ 10 , 1982 .

[15]  Wilfried Meyer,et al.  PNO-CI and CEPA studies of electron correlation effects , 1974 .

[16]  G. T. Fraser,et al.  Electric dipole moment of X2Π OH and OD in several vibrational states , 1984 .

[17]  D. Yaron,et al.  Absolute infrared transition moments for open shell diatomics from J dependence of transition intensities: Application to OH , 1989 .

[18]  D. Crosley,et al.  Vibrational energy transfer and quenching of OH(A/sup 2/. sigma. /sup +/, v'= 1) , 1988 .

[19]  A. H. Barrett,et al.  Discovery of Hydroxyl Radio Emission from Infrared Stars , 1968, Science.

[20]  R. E. Murphy Infrared Emission of OH in the Fundamental and First Overtone Bands , 1971 .

[21]  F. Mies Calculated vibrational transition probabilities of OH(X2Π) , 1974 .

[22]  J. Wolfrum,et al.  OH(X 2Π) state distribution from HNO3 and H2O2 photodissociation at 193 nm , 1983 .

[23]  W. J. Stevens,et al.  Study of the ground state potential curve and dipole moment of OH by the method of optimized valence configurations , 1974 .

[24]  C. Effantin,et al.  Intensites absolues et forces d'oscillateur de quelques raies des bandes de vibration-rotation 1-0 et 2-1 du radical OH , 1971 .

[25]  J. Anderson The absolute concentration of OH(X²π) in the Earth's stratosphere , 1976 .

[26]  B. Robinson,et al.  OH Molecules in the Interstellar Medium , 1967 .

[27]  Harold S. Johnston,et al.  Measurement of vibration‐rotation line strengths of HO using a tunable diode laser , 1983 .

[28]  S. Peyerimhoff,et al.  A general procedure for the theoretical study of the Λ-doubling , 1988 .

[29]  G. Whitten,et al.  Photolysis of nitric acid vapor , 1974 .

[30]  Ian W. M. Smith,et al.  Vibrational relaxation of OH(v= 1) and OD(v= 1) by HNO3, DNO3, H2O, NO and NO2 , 1985 .

[31]  F. Stuhl,et al.  Excitation mechanism for hydroxyl(A) in the argon fluoride excimer laser photolysis of nitric acid , 1986 .