On a boundary value method for computing Sturm–Liouville potentials from two spectra
暂无分享,去创建一个
[1] Alan L. Andrew,et al. Finite difference methods for half inverse Sturm-Liouville problems , 2011, Appl. Math. Comput..
[2] C. Magherini,et al. Boundary Value Methods for the Reconstruction of Sturm‐Liouville potentials , 2011 .
[3] Cecilia Magherini,et al. BVMs for computing Sturm-Liouville symmetric potentials , 2010, Appl. Math. Comput..
[4] Christine Böckmann,et al. Boundary value method for inverse Sturm-Liouville problems , 2009, Appl. Math. Comput..
[5] Lidia Aceto,et al. Boundary Value Methods as an extension of Numerov's method for Sturm--Liouville eigenvalue estimates , 2009 .
[6] Lidia Aceto,et al. BVMs for Sturm-Liouville Eigenvalue Estimates with General Boundary Conditions , 2009 .
[7] Christine Böckmann,et al. Determination of partially known Sturm-Liouville potentials , 2008, Appl. Math. Comput..
[8] Numerical solution of forward and inverse Sturm-Liouville problems with an angular momentum singularity , 2008 .
[9] C. Böckmann,et al. Reconstruction method for inverse Sturm–Liouville problems with discontinuous potentials , 2007 .
[10] A. Andrew. Computing Sturm–Liouville potentials from two spectra , 2006 .
[11] Norbert R hrl. A least-squares functional for solving inverse Sturm?Liouville problems , 2005 .
[12] N. Roehrl. A least-squares functional for solving inverse Sturm–Liouville problems , 2005, math/0502407.
[13] Robert S. Anderssen,et al. On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems , 1981, Computing.
[14] A. Andrew. Numerov's method for inverse Sturm–Liouville problems , 2005 .
[15] A. Andrew. Numerical solution of inverse Sturm--Liouville problems , 2004 .
[16] Alan L. Andrew,et al. Asymptotic Correction of More Sturm–Liouville Eigenvalue Estimates , 2003 .
[17] G. Golub,et al. Structured inverse eigenvalue problems , 2002, Acta Numerica.
[18] Alan L. Andrew,et al. Asymptotic correction of Numerov's eigenvalue estimates with natural boundary conditions , 2000 .
[19] V. Vinokurov,et al. THE EIGENVALUE AND TRACE OF THE STURM-LIOUVILLE OPERATOR AS DIFFERENTIABLEFUNCTIONS OF A SUMMABLE POTENTIAL , 1999 .
[20] Moody T. Chu,et al. Inverse Eigenvalue Problems , 1998, SIAM Rev..
[21] N. Levinson,et al. The Inverse Sturm-Liouville Problem , 1998 .
[22] L. Brugnano,et al. Solving differential problems by multistep initial and boundary value methods , 1998 .
[23] R. Fabiano,et al. A finite-difference algorithm for an inverse Sturm-Liouville problem , 1995 .
[24] William Rundell,et al. The reconstruction of Sturm-Liouville operators , 1992 .
[25] William Rundell,et al. The recovery of potentials from finite spectral data , 1992 .
[26] William Rundell,et al. Reconstruction techniques for classical inverse Sturm-Liouville problems , 1992 .
[27] Ji-guang Sun,et al. Multiple eigenvalue sensitivity analysis , 1990 .
[28] P. Sacks. An iterative method for the inverse Dirichlet problem , 1988 .
[29] tetsuro Yammoto,et al. A convergence theorem for Newton-like methods in Banach spaces , 1987 .
[30] J. Pöschel,et al. Inverse spectral theory , 1986 .
[31] Alan L. Andrew,et al. Correction of Numerov's eigenvalue estimates , 1985 .
[32] Akira Mizutani. On the inverse Sturm-Liouville problem , 1984 .
[33] J. Paine,et al. A Numerical Method for the Inverse Sturm–Liouville Problem , 1984 .
[34] Ole Hald,et al. The inverse Sturm-Liouville problem and the Rayleigh-Ritz method , 1978 .
[35] H. Hochstadt,et al. AN INVERSE STURM-LIOUVILLE PROBLEM WITH MIXED GIVEN DATA* , 1978 .
[36] I. Gel'fand,et al. On the determination of a differential equation from its spectral function , 1955 .
[37] Göran Borg. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .