On a boundary value method for computing Sturm–Liouville potentials from two spectra

Convergence of a boundary value method (BVM) in Aceto et al. [Boundary value methods for the reconstruction of Sturm–Liouville potentials, Appl. Math. Comput. 219 (2012), pp. 2960–2974] for computing Sturm–Liouville potentials from two spectra is discussed. In Aceto et al. (2012), a continuous approximation of the unknown potential belonging to a suitable function space of finite dimension is obtained by forming an associated set of nonlinear equations and solving these with a quasi-Newton approach. In our paper, convergence of the quasi-Newton approach is established and convergence of the estimate of the unknown potential, provided by the exact solution of the nonlinear equation, to the true potential is proved. To further investigate the properties of the BVM in Aceto et al. (2012), some other spaces of functions are introduced. Numerical examples confirm the theoretically predicted convergence properties and show the accuracy and stability of the BVM.

[1]  Alan L. Andrew,et al.  Finite difference methods for half inverse Sturm-Liouville problems , 2011, Appl. Math. Comput..

[2]  C. Magherini,et al.  Boundary Value Methods for the Reconstruction of Sturm‐Liouville potentials , 2011 .

[3]  Cecilia Magherini,et al.  BVMs for computing Sturm-Liouville symmetric potentials , 2010, Appl. Math. Comput..

[4]  Christine Böckmann,et al.  Boundary value method for inverse Sturm-Liouville problems , 2009, Appl. Math. Comput..

[5]  Lidia Aceto,et al.  Boundary Value Methods as an extension of Numerov's method for Sturm--Liouville eigenvalue estimates , 2009 .

[6]  Lidia Aceto,et al.  BVMs for Sturm-Liouville Eigenvalue Estimates with General Boundary Conditions , 2009 .

[7]  Christine Böckmann,et al.  Determination of partially known Sturm-Liouville potentials , 2008, Appl. Math. Comput..

[8]  Numerical solution of forward and inverse Sturm-Liouville problems with an angular momentum singularity , 2008 .

[9]  C. Böckmann,et al.  Reconstruction method for inverse Sturm–Liouville problems with discontinuous potentials , 2007 .

[10]  A. Andrew Computing Sturm–Liouville potentials from two spectra , 2006 .

[11]  Norbert R hrl A least-squares functional for solving inverse Sturm?Liouville problems , 2005 .

[12]  N. Roehrl A least-squares functional for solving inverse Sturm–Liouville problems , 2005, math/0502407.

[13]  Robert S. Anderssen,et al.  On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems , 1981, Computing.

[14]  A. Andrew Numerov's method for inverse Sturm–Liouville problems , 2005 .

[15]  A. Andrew Numerical solution of inverse Sturm--Liouville problems , 2004 .

[16]  Alan L. Andrew,et al.  Asymptotic Correction of More Sturm–Liouville Eigenvalue Estimates , 2003 .

[17]  G. Golub,et al.  Structured inverse eigenvalue problems , 2002, Acta Numerica.

[18]  Alan L. Andrew,et al.  Asymptotic correction of Numerov's eigenvalue estimates with natural boundary conditions , 2000 .

[19]  V. Vinokurov,et al.  THE EIGENVALUE AND TRACE OF THE STURM-LIOUVILLE OPERATOR AS DIFFERENTIABLEFUNCTIONS OF A SUMMABLE POTENTIAL , 1999 .

[20]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[21]  N. Levinson,et al.  The Inverse Sturm-Liouville Problem , 1998 .

[22]  L. Brugnano,et al.  Solving differential problems by multistep initial and boundary value methods , 1998 .

[23]  R. Fabiano,et al.  A finite-difference algorithm for an inverse Sturm-Liouville problem , 1995 .

[24]  William Rundell,et al.  The reconstruction of Sturm-Liouville operators , 1992 .

[25]  William Rundell,et al.  The recovery of potentials from finite spectral data , 1992 .

[26]  William Rundell,et al.  Reconstruction techniques for classical inverse Sturm-Liouville problems , 1992 .

[27]  Ji-guang Sun,et al.  Multiple eigenvalue sensitivity analysis , 1990 .

[28]  P. Sacks An iterative method for the inverse Dirichlet problem , 1988 .

[29]  tetsuro Yammoto,et al.  A convergence theorem for Newton-like methods in Banach spaces , 1987 .

[30]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[31]  Alan L. Andrew,et al.  Correction of Numerov's eigenvalue estimates , 1985 .

[32]  Akira Mizutani On the inverse Sturm-Liouville problem , 1984 .

[33]  J. Paine,et al.  A Numerical Method for the Inverse Sturm–Liouville Problem , 1984 .

[34]  Ole Hald,et al.  The inverse Sturm-Liouville problem and the Rayleigh-Ritz method , 1978 .

[35]  H. Hochstadt,et al.  AN INVERSE STURM-LIOUVILLE PROBLEM WITH MIXED GIVEN DATA* , 1978 .

[36]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[37]  Göran Borg Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .