Hyers-Ulam stability of additive set-valued functional equations

Abstract In this paper, we define the following additive set-valued functional equations (1) f ( α x + β y ) = r f ( x ) + s f ( y ) , (2) f ( x + y + z ) = 2 f ( x + y 2 ) + f ( z ) for some real numbers α > 0 , β > 0 , r , s ∈ R with α + β = r + s ≠ 1 , and prove the Hyers–Ulam stability of the above additive set-valued functional equations.

[1]  Themistocles M. Rassias,et al.  On the Stability of Functional Equations and a Problem of Ulam , 2000 .

[2]  G. Debreu Integration of correspondences , 1967 .

[3]  T. Rassias Functional Equations and Inequalities , 2000 .

[4]  Piao Yong-jie The existence and uniqueness of additive selection for (α,β)-(β,α) type subadditive set valued maps , 2009 .

[5]  Hess Christian,et al.  CHAPTER 14 – Set-Valued Integration and Set-Valued Probability Theory: An Overview , 2002 .

[6]  George Isac,et al.  On the Hyers-Ulam Stability of ψ-Additive Mappings , 1993 .

[7]  J. Aczel,et al.  Functional Equations in Several Variables , 2008 .

[8]  P. Gǎvruţa,et al.  A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings , 1994 .

[9]  P. Gǎvruţa,et al.  A new method for the generalized Hyers-Ulam-Rassias stability , 2010 .

[10]  Endre Pap,et al.  Handbook of measure theory , 2002 .

[11]  T. Rassias On the stability of the linear mapping in Banach spaces , 1978 .

[12]  M. Eshaghi Gordji,et al.  Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces , 2010, Appl. Math. Lett..

[13]  D. H. Hyers On the Stability of the Linear Functional Equation. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[14]  George Isac,et al.  Stability of Functional Equations in Several Variables , 1998 .

[15]  H. Khodaei,et al.  Approximately generalized additive functions in several variables , 2010 .

[16]  S. Ulam Problems in modern mathematics , 1964 .

[17]  S. Czerwik,et al.  K-convex and K-concave set-valued functions , 2002 .

[18]  Some results on stability and on characterization of K-convexity of set-valued functions , 1993 .

[19]  Kazimierz Nikodem Set-valued solutions of the Pexider functional equation , 1988 .

[20]  P. Cholewa,et al.  Remarks on the stability of functional equations , 1983 .

[21]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[22]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[23]  W. Hildenbrand Core and Equilibria of a Large Economy. , 1974 .

[24]  Themistocles M. Rassias,et al.  On the Stability of Functional Equations in Banach Spaces , 2000 .

[25]  Tosio Aoki,et al.  On the Stability of the linear Transformation in Banach Spaces. , 1950 .

[26]  L. McKenzie,et al.  ON THE EXISTENCE OF GENERAL EQUILIBRIUM FOR A COMPETITIVE MARKET , 1959 .