The round functions of KASUMI generate the alternating group

Abstract We show that the round functions of the KASUMI block cipher for odd and even round type generate the alternating group on the message space. Moreover, under the assumption of independent round keys, we prove that also the KASUMI two-round functions and the KASUMI encryption functions generate the alternating group.

[1]  M. Liebeck,et al.  Primitive Permutation Groups Containing an Element of Large Prime Order , 1985 .

[2]  Ralph Wernsdorf,et al.  The Round Functions of RIJNDAEL Generate the Alternating Group , 2002, FSE.

[3]  Massimiliano Sala,et al.  An application of the O’Nan-Scott theorem to the group generated by the round functions of an AES-like cipher , 2009, Des. Codes Cryptogr..

[4]  Á. Seress Permutation Group Algorithms , 2003 .

[5]  Keting Jia,et al.  Improved Cryptanalysis of the Block Cipher KASUMI , 2012, Selected Areas in Cryptography.

[6]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[7]  C. Praeger On elements of prime order in primitive permutation groups , 1979 .

[8]  Teruo Saito A Single-Key Attack on 6-Round KASUMI , 2011, IACR Cryptol. ePrint Arch..

[9]  Rüdiger Sparr,et al.  Group theoretic properties of Rijndael-like ciphers , 2008, Discret. Appl. Math..

[10]  Oded Goldreich,et al.  DES-like functions can generate the alternating group , 1983, IEEE Trans. Inf. Theory.

[11]  Ralph Wernsdorf,et al.  The One-Round Functions of the DES Generate the Alternating Group , 1992, EUROCRYPT.

[12]  Serge Vaudenay,et al.  Proving the Security of AES Substitution-Permutation Network , 2005, Selected Areas in Cryptography.

[13]  Kenneth G. Paterson,et al.  Imprimitive Permutation Groups and Trapdoors in Iterated Block Ciphers , 1999, FSE.

[14]  Yvo Desmedt,et al.  Complementation-Like and Cyclic Properties of AES Round Functions , 2004, AES Conference.

[15]  Mitsuru Matsui,et al.  New Block Encryption Algorithm MISTY , 1997, FSE.

[16]  Ralph Wernsdorf,et al.  Markov Ciphers and Alternating Groups , 1994, EUROCRYPT.

[17]  Kaoru Kurosawa,et al.  On the Pseudorandomness of KASUMI Type Permutations , 2003, ACISP.

[18]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[19]  Adi Shamir,et al.  A Practical-Time Related-Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony , 2010, CRYPTO.