Predicting β′ precipitate morphology and evolution in Mg–RE alloys using a combination of first-principles calculations and phase-field modeling

Abstract The precipitate morphology in Mg–rare earth (RE) element binary alloys is predicted using a multi-scale modeling approach combining a three-dimensional (3-D) phase-field model and first-principles density functional theory calculations. First-principles calculations provide all the required input parameters for the phase-field model, including lattice parameters, elastic constants, formation energies and interfacial energies. This integrated model is applied to a Mg–Nd alloy as a model system. Quantitative 3-D phase-field simulations are performed to study the metastable β′ precipitate morphologies, habit plane formation and spatial distribution of the precipitates during isothermal aging. The predicted morphologies of β′ precipitates are in excellent agreement with existing experimental observations. The influence of the precipitate morphology on the mechanical properties is also evaluated using the Orowan equation. The results are expected to provide guidance for achieving desirable precipitate morphologies and thus mechanical properties in Mg alloys.

[1]  C. Pareige,et al.  Nano-precipitates made of atomic pillars revealed by single atom detection in a Mg-Nd alloy , 2012 .

[2]  L. Hector,et al.  Atomistic study of edge and screw (c + a) dislocations in magnesium , 2010 .

[3]  M. Gibson,et al.  The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys , 2009 .

[4]  L. Rokhlin Magnesium Alloys Containing Rare Earth Metals: Structure and Properties , 2003 .

[5]  Zi-kui Liu,et al.  Quantitative interface models for simulating microstructure evolution , 2004 .

[6]  Tao Wang,et al.  Three-dimensional phase-field simulations of coarsening kinetics of γ' particles in binary Ni-Al alloys , 2004 .

[7]  K. Hono,et al.  Atom probe characterization of plate-like precipitates in a Mg–RE–Zn–Zr casting alloy , 2003 .

[8]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  B. Johansson,et al.  Rare earth elements in α-Ti: A first-principles investigation , 2009 .

[11]  I. Stulíková,et al.  Microstructure Evolution in Isochronally Heat Treated Mg–Gd Alloys , 1999 .

[12]  Zi-kui Liu,et al.  First-principles calculations and phenomenological modeling of lattice misfit in Ni-base superalloys , 2006 .

[13]  C. Wolverton,et al.  First-principles study of solute–vacancy binding in magnesium , 2010 .

[14]  A. Rollett,et al.  First-principles calculation of lattice stability of C15–M2R and their hypothetical C15 variants (M=Al, Co, Ni; R=Ca, Ce, Nd, Y) , 2006 .

[15]  Xin Sun,et al.  A phase-field model for deformation twinning , 2011 .

[16]  T. Ohkubo,et al.  Effect of Zn additions on the age-hardening of Mg-2.0gd-1.2Y-0.2Zr alloys , 2007 .

[17]  Yunzhi Wang,et al.  A simulation study of the shape of β′ precipitates in Mg–Y and Mg–Gd alloys , 2013 .

[18]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[19]  J. Nie Precipitation and Hardening in Magnesium Alloys , 2012, Metallurgical and Materials Transactions A.

[20]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[21]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[22]  J. Saal,et al.  Solute–vacancy binding of the rare earths in magnesium from first principles , 2012 .

[23]  Jeff Simmons,et al.  Microstructural development involving nucleation and growth phenomena simulated with the Phase Field method , 2004 .

[24]  Christopher M Wolverton,et al.  Thermodynamic stability of Mg–Y–Zn long-period stacking ordered structures , 2012 .

[25]  A. Luo,et al.  A phase field model for simulating the precipitation of multi-variant β-Mg17Al12 in Mg–Al-based alloys , 2013 .

[26]  L. Hector,et al.  Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions , 2009 .

[27]  B. Muddle,et al.  Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy , 2000 .

[28]  A. Zunger,et al.  First-principles kinetic theory of precipitate evolution in Al-Zn alloys , 2002 .

[29]  C. Wolverton,et al.  Multiscale modeling of precipitate microstructure evolution. , 2002, Physical review letters.

[30]  Christopher M Wolverton,et al.  Multiscale modeling of θ′ precipitation in Al–Cu binary alloys , 2004 .

[31]  A. Luo Recent magnesium alloy development for elevated temperature applications , 2004 .

[32]  Ferreira,et al.  Efficient cluster expansion for substitutional systems. , 1992, Physical review. B, Condensed matter.

[33]  Zi-kui Liu,et al.  Thermodynamic description and growth kinetics of stoichiometric precipitates in the phase-field approach , 2007 .

[34]  S. Agnew,et al.  Preface to the viewpoint set on: The current state of magnesium alloy science and technology , 2010 .

[35]  Zhanpeng Jin,et al.  Thermodynamic optimization of Mg-Nd system , 2007 .

[36]  D. G. Pettifor,et al.  Correlation between d-band occupancy and crystal structure in the rare earths , 1977 .

[37]  J. Nie Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys , 2003 .

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[40]  Xiang Gao,et al.  Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn , 2005 .

[41]  K. Hiraga,et al.  The Structures of Precipitates in an Mg-0.5 at%Nd Age-Hardened Alloy Studied by HAADF-STEM Technique , 2011 .

[42]  C. Wolverton,et al.  First-principles phase stability, magnetic properties and solubility in aluminum–rare-earth (Al–RE) alloys and compounds , 2011 .

[43]  M. Gibson,et al.  The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys , 2010 .

[44]  Kenji Hiraga,et al.  Characterization of β' Precipitate Phase in Mg-2 at%Y Alloy Aged to Peak Hardness Condition by High-Angle Annular Detector Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) , 2007 .

[45]  J. Saal,et al.  Thermodynamic stability of Mg-based ternary long-period stacking ordered structures , 2013, 1309.3184.

[46]  Kazuhiro Hono,et al.  Precipitation of prismatic plates in Mg–0.3Ca alloys with In additions , 2011 .

[47]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[48]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[49]  Paul Saxe,et al.  Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress , 2002 .

[50]  M. Gibson,et al.  The role of crystallography and thermodynamics on phase selection in binary magnesium–rare earth (Ce or Nd) alloys , 2012 .

[51]  M. Bamberger,et al.  Trends in the Development of New Mg Alloys , 2008 .

[52]  N. Ünlü,et al.  Reassessment of Al-Ce and Al-Nd binary systems supported by critical experiments and first-principles energy calculations , 2005 .

[53]  T. Pollock Weight Loss with Magnesium Alloys , 2010, Science.

[54]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[56]  Xiaoling Xiao,et al.  Characterisation of precipitate phases in magnesium alloys using electron microdiffraction , 2001 .

[57]  Kenji Hiraga,et al.  Structural Changes of Precipitates in an Mg-5 at%Gd Alloy Studied by Transmission Electron Microscopy , 2007 .

[58]  Jeff Simmons,et al.  Phase field modeling of simultaneous nucleation and growth by explicitly incorporating nucleation events , 2000 .

[59]  Yuehui He,et al.  Phase stability of magnesium-rare earth binary systems from first-principles calculations , 2011 .

[60]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[61]  Lin-wang Wang,et al.  Prediction of alloy precipitate shapes from first principles , 2001 .

[62]  A. Zunger,et al.  Predicting the size- and temperature-dependent shapes of precipitates in Al–Zn alloys , 2000 .

[63]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[64]  Engineering,et al.  First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties , 2010, 1007.2585.

[65]  Toshio Suzuki,et al.  Phase-field model for binary alloys. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  Yunzhi Wang,et al.  Simulation study of precipitation in an Mg–Y–Nd alloy , 2012 .

[67]  J. Saal,et al.  Physical factors controlling the observed high-strength precipitate morphology in Mg–rare earth alloys , 2014 .

[68]  M. Nishijima,et al.  Structural Changes of Precipitates by Aging of an Mg-4 at%Dy Solid Solution Studied by Atomic-Scaled Transmission Electron Microscopy , 2011 .

[69]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[70]  F. Aldinger,et al.  Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory , 2007 .

[71]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.