Automatic parameterization of rational curves and surfaces IV: algebraic space curves

For an irreducible algebraic space curve <italic>C</italic> that is implicitly defined as the intersection of two algebraic surfaces, <italic>f</italic> (<italic>x</italic>, <italic>y</italic>, <italic>z</italic>) = 0 and <italic>g</italic> (<italic>x</italic>, <italic>y</italic>, <italic>z</italic>) = 0, there always exists a birational correspondence between the points of <italic>C</italic> and the points of an irreducible plane curve <italic>P</italic>, whose genus is the same as that of <italic>C</italic>. Thus <italic>C</italic> is rational if the genus of <italic>P</italic> is zero. Given an irreducible space curve <italic>C</italic> = (<italic>f</italic> ∩ <italic>g</italic>), with <italic>f</italic> and <italic>g</italic> not tangent along <italic>C</italic>, we present a method of obtaining a projected irreducible plane curve <italic>P</italic> together with birational maps between the points of <italic>P</italic> and <italic>C</italic>. Together with [4], this method yields an algorithm to compute the genus of <italic>C</italic>, and if the genus is zero, the rational parametric equations for <italic>C</italic>. As a biproduct, this method also yields the implicit and parametric equations of a rational surface <italic>S</italic> containing the space curve <italic>C</italic>. The birational mappings of implicitly defined space curves find numerous applications in geometric modeling and computer graphics since they provide an efficient way of manipulating curves in space by processing curves in the plane. Additionally, having rational surfaces containing <italic>C</italic> yields a simple way of generating related families of rational space curves.

[1]  Chandrajit L. Bajaj,et al.  Automatic parameterization of rational curves and surfaces III: Algebraic plane curves , 1988, Comput. Aided Geom. Des..

[2]  Joe D. Warren,et al.  On computing the intersection of a pair of algebraic surfaces , 1989, Comput. Aided Geom. Des..

[3]  Chandrajit L. Bajaj,et al.  Geometric Modeling with Algebraic Surfaces , 1988, IMA Conference on the Mathematics of Surfaces.

[4]  C. Bajaj,et al.  Automatic parametrization of rational curves and surfaces II: cubics and cubicoids , 1987 .

[5]  T. Sederberg,et al.  Parametrization of cubic algebraic surfaces , 1987 .

[6]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[7]  S. Abhyankar,et al.  Automatic parameterization of rational curves and surfaces 1: conics and conicoids , 1987 .

[8]  R. J. Walker Algebraic curves , 1950 .

[9]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[10]  C. H. Sisam,et al.  Analytic Geometry Of Space , .

[11]  W. Habicht Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens , 1948 .

[12]  George E. Collins,et al.  The Calculation of Multivariate Polynomial Resultants , 1971, JACM.

[13]  James H. Davenport,et al.  The computerization of algebraic geometry , 1979, EUROSAM.

[14]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[15]  M. Bôcher Introduction to higher algebra , 2013 .

[16]  S. Abhyankar Algebraic Space Curves , 1971 .

[17]  W. Gellert,et al.  Analytic geometry of space , 1975 .

[18]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[19]  W. S. Brown The Subresultant PRS Algorithm , 1978, TOMS.

[20]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[21]  George Salmon Lessons introductory to the modern higher algebra , 1885 .

[22]  G. M. Introduction to Higher Algebra , 1908, Nature.

[23]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..