An Overview of the Ultrawide Bandgap Ga2O3 Semiconductor-Based Schottky Barrier Diode for Power Electronics Application

Gallium oxide (Ga2O3) is a new semiconductor material which has the advantage of ultrawide bandgap, high breakdown electric field, and large Baliga’s figure of merit (BFOM), so it is a promising candidate for the next-generation high-power devices including Schottky barrier diode (SBD). In this paper, the basic physical properties of Ga2O3 semiconductor have been analyzed. And the recent investigations on the Ga2O3-based SBD have been reviewed. Meanwhile, various methods for improving the performances including breakdown voltage and on-resistance have been summarized and compared. Finally, the prospect of Ga2O3-based SBD for power electronics application has been analyzed.

[1]  S. Fujita,et al.  A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique , 2018 .

[2]  Y. Kumagai,et al.  Current status of Ga2O3 power devices , 2016 .

[3]  Steven A. Ringel,et al.  Influence of metal choice on (010) β-Ga2O3 Schottky diode properties , 2017 .

[4]  R. Mitdank,et al.  Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals , 2014, 1407.4272.

[5]  Joel B. Varley,et al.  Oxygen vacancies and donor impurities in β-Ga2O3 , 2010 .

[6]  Ahmed A. Al-Ghamdi,et al.  New concept ultraviolet photodetectors , 2015 .

[7]  S. Dhar,et al.  Analysis of temperature dependent forward characteristics of Ni/ ( 2 ¯ 01 ) β-Ga2O3 Schottky diodes , 2016 .

[8]  Hideo Hosono,et al.  Deep-ultraviolet transparent conductive β-Ga2O3 thin films , 2000 .

[9]  H. Cha,et al.  Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate , 2018, Results in Physics.

[10]  R. Davis,et al.  Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals , 2017 .

[11]  Yoshinori Hatanaka,et al.  Ga2O3 thin film for oxygen sensor at high temperature , 2001 .

[12]  Rustum Roy,et al.  Polymorphism of Ga2O3 and the System Ga2O3—H2O , 1952 .

[13]  Stephen J. Pearton,et al.  Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW.cm-2 figure-of-merit , 2018 .

[14]  Akito Kuramata,et al.  High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth , 2016 .

[15]  Akihiko Furukawa,et al.  Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage , 2017 .

[16]  Stephen J. Pearton,et al.  High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3 , 2017 .

[17]  Akito Kuramata,et al.  Vertical Geometry, 2-A Forward Current Ga2O3 Schottky Rectifiers on Bulk Ga2O3 Substrates , 2018, IEEE Transactions on Electron Devices.

[18]  Meiyong Liao,et al.  A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures , 2013, Sensors.

[19]  Philippe Godignon,et al.  A Survey of Wide Bandgap Power Semiconductor Devices , 2014, IEEE Transactions on Power Electronics.

[20]  Y. Kumagai,et al.  State-of-the-art technologies of gallium oxide power devices , 2017 .

[21]  Y. Hao,et al.  Investigation of temperature dependent electrical characteristics on Au/Ni/β-Ga 2 O 3 Schottky diodes , 2018, Superlattices and Microstructures.

[22]  Akito Kuramata,et al.  Si-Ion Implantation Doping in β-Ga2O3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts , 2013 .

[23]  Janghyuk Kim,et al.  Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors , 2016 .

[24]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .

[25]  Claus-Dieter Kohl,et al.  CO-SENSOR FOR DOMESTIC USE BASED ON HIGH TEMPERATURE STABLE GA2O3 THIN FILMS , 1998 .

[26]  Masataka Higashiwaki,et al.  Guest Editorial: The dawn of gallium oxide microelectronics , 2018 .

[27]  Saurabh Lodha,et al.  Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes , 2018 .

[28]  Ying Zhang,et al.  Schottky Barrier Rectifier Based on (100) β-Ga2O3 and its DC and AC Characteristics *These authors contributed equally to this work. , 2018 .

[29]  Hideo Aida,et al.  Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method , 2008 .

[30]  X. Lu,et al.  Research on the growth of β-(AlGa)2O3 film and the analysis of electrical characteristics of Ni/Au Schottky contact using Tung's model , 2018, Superlattices and Microstructures.

[31]  High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes , 2013, 1310.6824.

[32]  Akito Kuramata,et al.  Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics , 2013 .

[33]  Manijeh Razeghi,et al.  A review of the growth, doping, and applications of β-Ga2O3 thin films , 2018, OPTO.

[34]  H. Kambara,et al.  Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY® , 2016 .

[35]  H. Chen,et al.  A Comparative Study on the Electrical Properties of Vertical ( $\bar{\sf2}01$ ) and (010) $\beta$ -Ga2O3 Schottky Barrier Diodes on EFG Single-Crystal Substrates , 2018, IEEE Transactions on Electron Devices.

[36]  Hong Zhou,et al.  High-Performance Depletion/Enhancement-ode $\beta$ -Ga2O3 on Insulator (GOOI) Field-Effect Transistors With Record Drain Currents of 600/450 mA/mm , 2016, IEEE Electron Device Letters.

[37]  M. Fleischer,et al.  Decomposition of methane on polycrystalline thick films of Ga2O3 investigated by thermal desorption spectroscopy with a mass spectrometer , 1997 .

[38]  Y. Hao,et al.  Lateral $\beta$ -Ga2O3 Schottky Barrier Diode on Sapphire Substrate With Reverse Blocking Voltage of 1.7 kV , 2018, IEEE Journal of the Electron Devices Society.

[39]  M. Grundmann,et al.  Method of choice for fabrication of high-quality ZnO-based Schottky diodes , 2014 .

[40]  Ying Zhang,et al.  Characterization of the inhomogeneous barrier distribution in a Pt/(100)β-Ga2O3 Schottky diode via its temperature-dependent electrical properties , 2018 .

[41]  Xutang Tao,et al.  Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics , 2017 .

[42]  Akito Kuramata,et al.  1-kV vertical Ga2O3 field-plated Schottky barrier diodes , 2017 .

[43]  Akira Ohtomo,et al.  Formation of Semi-Insulating Layers on Semiconducting β-Ga2O3 Single Crystals by Thermal Oxidation , 2013 .

[44]  A. Janotti,et al.  Oxygen vacancies in ZnO , 2005 .

[45]  Roberto Orlando,et al.  First-principles study of the structural, electronic, and optical properties of Ga 2 O 3 in its monoclinic and hexagonal phases , 2006 .

[46]  F. Ren,et al.  High Breakdown Voltage ( − 201 ) β-Ga 2 O 3 Schottky Rectifiers , 2017 .

[47]  Fangyuan Sun,et al.  Anisotropic thermal conductivity in single crystal β-gallium oxide , 2015 .

[48]  John D. Albrecht,et al.  Lattice thermal conductivity in β-Ga2O3 from first principles , 2015 .

[49]  S. J. Pearton,et al.  High Breakdown Voltage (−201) $\beta $ -Ga2O3 Schottky Rectifiers , 2017, IEEE Electron Device Letters.

[50]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[51]  A. Kuramata,et al.  $\hbox{Ga}_{2} \hbox{O}_{3}$ Schottky Barrier Diodes Fabricated by Using Single-Crystal $\beta$– $\hbox{Ga}_{2} \hbox{O}_{3}$ (010) Substrates , 2013, IEEE Electron Device Letters.

[52]  Y. Hao,et al.  Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode , 2018 .

[53]  S. Yamakoshi,et al.  Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n––Ga2O3 drift layers grown by halide vapor phase epitaxy , 2016 .

[54]  Z. Hajnal,et al.  Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3 , 1999 .

[55]  Gwangseok Yang,et al.  Electrical Characteristics of Vertical Ni/β-Ga2O3 Schottky Barrier Diodes at High Temperatures , 2017 .

[56]  Marius Grundmann,et al.  Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β‐Ga2O3 thin films grown by pulsed laser deposition , 2014 .

[57]  David I. Shahin,et al.  Thermionic Emission Analysis of TiN and Pt Schottky Contacts to β-Ga2O3 , 2017 .

[58]  Noboru Ichinose,et al.  Large-size β-Ga2O3 single crystals and wafers , 2004 .

[59]  Yuta Koga,et al.  High-mobility β-Ga2O3() single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact , 2015 .

[60]  Y. Hao,et al.  One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors , 2017 .

[61]  Gwangseok Yang,et al.  High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate , 2018 .

[62]  Shizuo Fujita,et al.  Wide-bandgap semiconductor materials: For their full bloom , 2014 .

[63]  Akito Kuramata,et al.  Development of gallium oxide power devices , 2014 .

[64]  Stephen J. Pearton,et al.  2300V Reverse Breakdown Voltage Ga2O3 Schottky Rectifiers , 2018 .

[65]  Ali Shakouri,et al.  β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect , 2017, 1703.06197.

[66]  R. Fornari,et al.  Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3 , 2012 .

[67]  H. Meixner,et al.  H2-induced changes in electrical conductance of β-Ga2O3 thin-film systems , 1992 .

[68]  J. S. Wallace,et al.  Spectroscopic and electrical calculation of band alignment between atomic layer deposited SiO2 and β-Ga2O3 ( 2¯01) , 2015 .

[69]  Hideo Hosono,et al.  Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals , 1997 .

[70]  Akito Kuramata,et al.  Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy , 2012 .

[71]  R. Davis,et al.  Investigation of Different Metals as Ohmic Contacts to β-Ga2O3: Comparison and Analysis of Electrical Behavior, Morphology, and Other Physical Properties , 2017, Journal of Electronic Materials.

[72]  Qi Liu,et al.  Schottky Barrier Rectifier Based on (100) $\beta$ -Ga2O3 and its DC and AC Characteristics , 2018, IEEE Electron Device Letters.

[73]  H. H. Tippins Optical Absorption and Photoconductivity in the Band Edge of β − Ga 2 O 3 , 1965 .

[74]  F. Ren,et al.  Temperature-Dependent Characteristics of Ni/Au and Pt/Au Schottky Diodes on β-Ga2O3 , 2017 .

[75]  S. Yamakoshi,et al.  Band alignment and electrical properties of Al2O3/β-Ga2O3 heterojunctions , 2014 .

[76]  B. Jayant Baliga,et al.  Fundamentals of Power Semiconductor Devices , 2008 .

[77]  Akito Kuramata,et al.  Recent progress in Ga2O3 power devices , 2016 .

[78]  Shingo Saito,et al.  Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy , 2015 .

[79]  Akito Kuramata,et al.  First Demonstration of Ga2O3 Trench MOS-Type Schottky Barrier Diodes , 2017, IEEE Electron Device Letters.

[80]  Dongxu Zhao,et al.  Solar-Blind Avalanche Photodetector Based On Single ZnO-Ga₂O₃ Core-Shell Microwire. , 2015, Nano letters.

[81]  D. Jena,et al.  Intrinsic electron mobility limits in β-Ga2O3 , 2016, 1610.04198.

[82]  Shui-Tong Lee,et al.  Hole electrical transporting properties in organic-Si Schottky solar cell , 2013 .