Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk

The magnetic vortex in nanopatterned elements is currently attracting enormous interest. A priori, one would assume that the formation of magnetic vortex states should exhibit a perfect symmetry, because the magnetic vortex has four degenerate states. Here we show the first direct observation of an asymmetric phenomenon in the formation process of vortex states in a permalloy nanodisk using high-resolution full-field magnetic transmission soft X-ray microscopy. Micromagnetic simulations confirm that the intrinsic Dzyaloshinskii-Moriya interaction, which arises from the spin-orbit coupling due to the lack of inversion symmetry near the disk surface, as well as surface-related extrinsic factors, is decisive for the asymmetric formation of vortex states.

[1]  S. Heinze,et al.  Atomic-scale spin spiral with a unique rotational sense: Mn monolayer on W(001). , 2008, Physical review letters.

[2]  O. Tchernyshyov,et al.  Vortices in thin ferromagnetic films and the skyrmion number , 2006, cond-mat/0611392.

[3]  U. Rößler,et al.  Influence of the Dzyaloshinskii-Moriya interaction on vortex states in magnetic nanodisks , 2010 .

[4]  A. N. Bogdanov,et al.  Theory of vortex states in magnetic nanodisks with induced Dzyaloshinskii-Moriya interactions , 2009, 0906.5552.

[5]  B. A. Ivanov,et al.  Eigenfrequencies of vortex state excitations in magnetic submicron-size disks , 2001 .

[6]  Young-Sang Yu,et al.  Universal criterion and phase diagram for switching a magnetic vortex core in soft magnetic nanodots. , 2008, Physical review letters.

[7]  A. Scholl,et al.  Vortex Core-Driven Magnetization Dynamics , 2004, Science.

[8]  C. H. Back,et al.  Magnetic vortex core reversal by excitation with short bursts of an alternating field , 2006, Nature.

[9]  T. Tyliszczak,et al.  X-ray imaging of the dynamic magnetic vortex core deformation , 2008, 0811.1348.

[10]  Peter Fischer Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales , 2008 .

[11]  P. Fischer,et al.  X-ray imaging of vortex cores in confined magnetic structures , 2011 .

[12]  R. Wiesendanger,et al.  Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet. , 2009, Physical review letters.

[13]  Peter Fischer Soft X-ray microscopy – a powerful analytical tool to image magnetism down to fundamental length and time scales , 2008 .

[14]  Ono,et al.  Magnetic vortex core observation in circular dots of permalloy , 2000, Science.

[15]  Teruo Ono,et al.  Electrical switching of the vortex core in a magnetic disk. , 2007, Nature materials.

[16]  M. Ezawa Compact merons and skyrmions in thin chiral magnetic films , 2010, 1010.4119.

[17]  R. Wiesendanger,et al.  Direct Observation of Internal Spin Structure of Magnetic Vortex Cores , 2002, Science.

[18]  R. Hertel,et al.  Exchange explosions: Magnetization dynamics during vortex-antivortex annihilation. , 2006, Physical review letters.

[19]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[20]  Y. Nakatani,et al.  Computer simulation of thermal fluctuation of fine particle magnetization based on Langevin equation , 1997 .

[21]  K. Buchanan,et al.  Magnetic vortex resonance in patterned ferromagnetic dots , 2005 .

[22]  A. Vansteenkiste,et al.  Chiral symmetry breaking of magnetic vortices by sample roughness , 2009, 0901.2014.

[23]  Valentyn Novosad,et al.  Field evolution of magnetic vortex state in ferromagnetic disks , 2001 .

[24]  U. Rößler,et al.  Chiral symmetry breaking in magnetic thin films and multilayers. , 2001, Physical review letters.

[25]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .