Dominating sets reconfiguration under token sliding

Let $G$ be a graph and $D_s$ and $D_{\textsf{t}}$ be two dominating sets of $G$ of size $k$. Does there exist a sequence $\langle D_0 = D_s, D_1, \ldots, D_{\ell-1}, D_\ell = D_{\textsf{t}} \rangle$ of dominating sets of $G$ such that $D_{i+1}$ can be obtained from $D_i$ by replacing one vertex with one of its neighbors? In this paper, we investigate the complexity of this decision problem. We first prove that this problem is PSPACE-complete, even when restricted to split, bipartite or bounded tree-width graphs. On the other hand, we prove that it can be solved in polynomial time on dually chordal graphs (a superclass of both trees and interval graphs) or cographs.

[1]  C. M. Mynhardt,et al.  Reconfiguration of Colourings and Dominating Sets in Graphs , 2019, 50 Years of Combinatorics, Graph Theory, and Computing.

[2]  Akira Suzuki,et al.  Decremental Optimization of Dominating Sets Under Reachability Constraints , 2019, ArXiv.

[3]  Paul S. Bonsma Independent Set Reconfiguration in Cographs and their Generalizations , 2016, J. Graph Theory.

[4]  Stephen T. Hedetniemi,et al.  Γ-graphs of Graphs , 2011, Discuss. Math. Graph Theory.

[5]  Stephen T. Hedetniemi,et al.  Linear Algorithms on Recursive Representations of Trees , 1979, J. Comput. Syst. Sci..

[6]  Marthe Bonamy,et al.  On a conjecture of Mohar concerning Kempe equivalence of regular graphs , 2015, J. Comb. Theory B.

[7]  Akira Suzuki,et al.  Decremental Optimization of Dominating Sets Under the Reconfiguration Framework , 2020, IWOCA.

[8]  Christos H. Papadimitriou,et al.  The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies , 2006, SIAM J. Comput..

[9]  Amer E. Mouawad,et al.  The complexity of independent set reconfiguration on bipartite graphs , 2018, SODA.

[10]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[11]  Alan A. Bertossi,et al.  Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..

[12]  Julia Böttcher,et al.  Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs , 2009, Eur. J. Comb..

[13]  Naomi Nishimura,et al.  Reconfiguration of dominating sets , 2014, J. Comb. Optim..

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  Falk Nicolai,et al.  Homogeneous sets and domination: A linear time algorithm for distance - hereditary graphs , 2001, Networks.

[16]  Maw-Shang Chang,et al.  Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs , 1992, SIAM J. Comput..

[17]  Elsev Iek The algorithmic use of hypertree structure and maximum neighbourhood orderings , 2003 .

[18]  J. Mark Keil The Complexity of Domination Problems in Circle Graphs , 1993, Discret. Appl. Math..

[19]  Takehiro Ito,et al.  On the complexity of reconfiguration problems , 2011, Theor. Comput. Sci..

[20]  Martin Milanic,et al.  Complexity of independent set reconfigurability problems , 2012, Theor. Comput. Sci..

[21]  Paul S. Bonsma,et al.  Finding Paths between graph colourings: PSPACE-completeness and superpolynomial distances , 2007, Theor. Comput. Sci..

[22]  Aline Parreau,et al.  Token Jumping in Minor-Closed Classes , 2017, FCT.

[23]  Erik D. Demaine,et al.  PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..

[24]  Takehiro Ito,et al.  Incremental optimization of independent sets under the reconfiguration framework , 2019, Journal of Combinatorial Optimization.

[25]  Marcin Wrochna,et al.  Reconfiguration in bounded bandwidth and tree-depth , 2014, J. Comput. Syst. Sci..

[26]  Karen Seyffarth,et al.  The k-Dominating Graph , 2012, Graphs Comb..

[27]  Naomi Nishimura,et al.  On the Parameterized Complexity of Reconfiguration Problems , 2013, IPEC.

[28]  Naomi Nishimura,et al.  Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas , 2015, ICALP.

[29]  Takehiro Ito,et al.  The complexity of dominating set reconfiguration , 2015, Theor. Comput. Sci..

[30]  Takehiro Ito,et al.  On the complexity of reconfiguration problems , 2008, Theor. Comput. Sci..

[31]  Carl Feghali,et al.  Paths between colourings of sparse graphs , 2018, Eur. J. Comb..

[32]  Fahad Panolan,et al.  Reconfiguration on Sparse Graphs , 2015, WADS.

[33]  Jan van den Heuvel,et al.  The complexity of change , 2013, Surveys in Combinatorics.

[34]  Naomi Nishimura,et al.  Introduction to Reconfiguration , 2018, Algorithms.

[35]  Paul Dorbec,et al.  The domination game played on unions of graphs , 2015, Discret. Math..

[36]  Naomi Nishimura,et al.  On the Parameterized Complexity of Reconfiguration Problems , 2013, Algorithmica.