A Riemannian Newton Algorithm for Nonlinear Eigenvalue Problems

We give the formulation of a Riemannian Newton algorithm for solving a class of nonlinear eigenvalue problems by minimizing a total energy function subject to the orthogonality constraint. Under some mild assumptions, we establish the global and quadratic convergence of the proposed method. Moreover, the positive definiteness condition of the Riemannian Hessian of the total energy function at a solution is derived. Some numerical tests are reported to illustrate the efficiency of the proposed method for solving large-scale problems.

[1]  Bernd G. Pfrommer,et al.  Unconstrained Energy Functionals for Electronic Structure Calculations , 1998 .

[2]  Claude Le Bris,et al.  Computational chemistry from the perspective of numerical analysis , 2005, Acta Numerica.

[3]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[4]  Robert E. Mahony,et al.  The geometry of weighted low-rank approximations , 2003, IEEE Trans. Signal Process..

[5]  R. Chan,et al.  An Introduction to Iterative Toeplitz Solvers , 2007 .

[6]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[7]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[8]  J. VandeVondele,et al.  An efficient orbital transformation method for electronic structure calculations , 2003 .

[9]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[10]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[11]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[12]  Juan C. Meza,et al.  On the Convergence of the Self-Consistent Field Iteration for a Class of Nonlinear Eigenvalue Problems , 2008, SIAM J. Matrix Anal. Appl..

[13]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[14]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[15]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[16]  Ya-Xiang Yuan,et al.  On the Convergence of the Self-Consistent Field Iteration in Kohn-Sham Density Functional Theory , 2013, SIAM J. Matrix Anal. Appl..

[17]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[18]  E. Cancès,et al.  On the convergence of SCF algorithms for the Hartree-Fock equations , 2000 .

[19]  José Mario Martínez,et al.  Globally convergent trust-region methods for self-consistent field electronic structure calculations. , 2004, The Journal of chemical physics.

[20]  Chao Yang,et al.  Solving a Class of Nonlinear Eigenvalue Problems by Newton's Method , 2009 .

[21]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[22]  Masao Fukushima,et al.  Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems , 1996, Math. Program..

[23]  Gilles Meyer Geometric optimization algorithms for linear regression on fixed-rank matrices , 2011 .

[24]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[25]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[26]  Gene H. Golub,et al.  Matrix computations , 1983 .

[27]  Gustavo E. Scuseria,et al.  Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .

[28]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[29]  Arias,et al.  Ab initio molecular dynamics: Analytically continued energy functionals and insights into iterative solutions. , 1992, Physical review letters.

[30]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[31]  Juan C. Meza,et al.  A Trust Region Direct Constrained Minimization Algorithm for the Kohn-Sham Equation , 2007, SIAM J. Sci. Comput..

[32]  Benedikt Wirth,et al.  Optimization Methods on Riemannian Manifolds and Their Application to Shape Space , 2012, SIAM J. Optim..

[33]  Jérôme Malick,et al.  Projection-like Retractions on Matrix Manifolds , 2012, SIAM J. Optim..

[34]  Jonathan H. Manton,et al.  Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..

[35]  L. Martínez,et al.  Density-based Globally Convergent Trust-region Methods for Self-consistent Field Electronic Structure Calculations , 2006 .

[36]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[37]  G. Kerker Efficient iteration scheme for self-consistent pseudopotential calculations , 1981 .

[38]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  Juan C. Meza,et al.  A constrained optimization algorithm for total energy minimization in electronic structure calculations , 2005, J. Comput. Phys..

[41]  Paweł Sałek,et al.  The trust-region self-consistent field method: towards a black-box optimization in Hartree-Fock and Kohn-Sham theories. , 2004, The Journal of chemical physics.

[42]  M. Head‐Gordon,et al.  A geometric approach to direct minimization , 2002 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[45]  Stefano Serra Capizzano,et al.  Nonnegative inverse eigenvalue problems with partial eigendata , 2012, Numerische Mathematik.

[46]  A. Zunger,et al.  New approach for solving the density-functional self-consistent-field problem , 1982 .