Remarks on the Patterson–Selberg zeta function, black hole vacua and extremal CFT partition functions
暂无分享,去创建一个
[1] Geoffrey S. Watson,et al. "Normal" Distribution Functions on Spheres and the Modified Bessel Functions , 1974 .
[2] J. S. Dowker. Quantum field theory on a cone , 1977 .
[3] M. Yor,et al. Loi de l'indice du lacet Brownien, et distribution de Hartman-Watson , 1980 .
[4] D. Hejhal. The Selberg trace formula for PSL (2, IR) , 1983 .
[5] J. Lepowsky,et al. A moonshine module for the Monster , 1985 .
[6] The Selberg Zeta-Function of a Kleinian Group , 1989 .
[7] M. Yor. On some exponential functionals of Brownian motion , 1992, Advances in Applied Probability.
[8] Black hole in three-dimensional spacetime. , 1992, Physical review letters.
[9] Laurent Guillopé. Upper Bounds on the Number of Resonances for Non-compact Riemann Surfaces , 1995 .
[10] Steif. Time-symmetric initial data for multibody solutions in three dimensions. , 1995, Physical review. D, Particles and fields.
[11] J. Gruet. Semi-groupe du mouvement brownienhyperbolique , 1996 .
[12] Floyd L. Williams. The role of Selberg's trace formula in the computation of Casimir energy for certain Clifford-Klein space-times , 1996, African Americans in Mathematics.
[13] R. Mann,et al. Quantum scalar field on three-dimensional (BTZ) black hole instanton: Heat kernel, effective action and thermodynamics , 1996, hep-th/9609085.
[14] S. Zerbini,et al. Quantum scalar field in D-dimensional static black hole space–times , 1999, gr-qc/9901036.
[15] L. Vanzo,et al. Quantum scalar field on the massless (2+1)-dimensional black hole background , 1998, gr-qc/9809041.
[16] N. Ikeda,et al. Brownian Motion on the Hyperbolic Plane and Selberg Trace Formula , 1999 .
[17] Relative entropy for compact Riemann surfaces , 1999, hep-th/9911111.
[18] P. Perry,et al. The divisor of Selberg's zeta function for Kleinian groups , 2001 .
[19] L. Alili,et al. On a triplet of exponential Brownian functionals , 2001 .
[20] F. Williams. A Zeta Function for the BTZ Black Hole , 2003 .
[21] P. Perry,et al. Selberg's zeta function and the spectral geometry of geometrically finite hyperbolic surfaces , 2003, math/0310364.
[22] M. Yor,et al. A study of the Hartman-Watson distribution motivated by numerical problems related to the pricing of Asian options , 2004 .
[23] A. Bytsenko,et al. Remarks on the Spectrum and Truncated Heat Kernel of the BTZ Black Hole , 2007 .
[24] Edward Witten,et al. Three-Dimensional Gravity Revisited , 2007, 0706.3359.
[25] D. Borthwick. Spectral theory of infinite-area hyperbolic surfaces , 2007 .
[26] A. Bytsenko,et al. Truncated heat kernel and one-loop determinants for the BTZ geometry , 2008, 0809.1416.
[27] A. Maloney,et al. One-loop Partition Functions of 3D Gravity , 2008, 0804.1773.
[28] D. Diaz. Holographic formula for the determinant of the scattering operator in thermal AdS , 2008, 0812.2158.
[29] C. Guillarmou. Generalized Krein formula, determinants, and Selberg zeta function in even dimension , 2009 .
[30] R. Aros,et al. Functional determinants, generalized BTZ geometries and Selberg zeta function , 2009, 0910.0029.
[31] E. Witten,et al. Quantum gravity partition functions in three dimensions , 2007, 0712.0155.
[32] F. Williams. The role of the PattersonSelberg zeta function of a hyperbolic cylinder in three-dimensional gravity with a negative cosmological constant , 2010 .
[33] F. Denef,et al. Black hole determinants and quasinormal modes , 2009, 0908.2657.
[34] R. Miatello,et al. The local zeta function for symmetric spaces of non-compact type , 2011 .
[35] J. Jorgenson. A Relation Involving Rankin–Selberg L-Functions of Cusp Forms and Maass Forms , 2012 .