Low-Cost Dilution Engine for Sample Preparation in Digital Microfluidic Biochips

Recently developed digital microfluidic biochips can implement biochemical laboratory assays (protocols) on a small size chip for automatic and reliable analysis of biochemical fluid samples. Dilution of a sample fluid is the basic step required in almost all bioassays. We propose a dilution engine for sample preparation that can produce multiple (a stream of) droplets of the target fluid with the same concentration level and present a scheduling scheme for mapping the dilution steps into the dilution engine. Our proposed architecture for dilution engine uses one ($1:1$) mix-split microfluidic module (mixer) and a constant number of storage units. Its performance is compared with another layout of only one mixer with no storage unit. Simulation results show that the proposed scheme can efficiently reuse the waste droplets of earlier steps and hence utilizes less amount of expensive biochemical fluids. Moreover, the scheme generates multiple target droplets with the same concentration level in less number of dilution steps (i.e., time) and at a relatively lower cost.

[1]  Mark K. Goldberg,et al.  Performance Characterization of a Reconfigurable Planar-Array Digital Microfluidic System , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  Krishnendu Chakrabarty,et al.  Waste-aware dilution and mixing of biochemical samples with digital microfluidic biochips , 2011, 2011 Design, Automation & Test in Europe.

[3]  K. Chakrabarty,et al.  On-chip biochemical sample preparation using digital microfluidics , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[4]  William Thies,et al.  Abstraction layers for scalable microfluidic biocomputing , 2008, Natural Computing.

[5]  Tao Xu,et al.  Automated, accurate, and inexpensive solution-preparation on a digital microfluidic biochip , 2008, 2008 IEEE Biomedical Circuits and Systems Conference.

[6]  Krishnendu Chakrabarty,et al.  Optimization of Dilution and Mixing of Biochemical Samples Using Digital Microfluidic Biochips , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  R. Fair,et al.  Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[8]  Phil Paik,et al.  Rapid droplet mixers for digital microfluidic systems. , 2003, Lab on a chip.

[9]  Krishnendu Chakrabarty,et al.  Digital Microfluidic Biochips - Design Automation and Optimization , 2010 .