Structural and functional consequences of the STAT5BN642H driver mutation

[1]  Johann Evelio Bedoya-Cardona Análisis por dinámica molecular de propiedades tensoactivas de lipopéptidos producidos por Bacillus spp. para su potencial uso en recuperación mejorada de petróleo , 2020 .

[2]  R. Moriggl,et al.  The neonatal microenvironment programs innate γδ T cells through the transcription factor STAT5. , 2020, The Journal of clinical investigation.

[3]  T. Iwakuma,et al.  Suppressing STAT5 signaling affects osteosarcoma growth and stemness , 2020, Cell Death & Disease.

[4]  F. Gouilleux,et al.  Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers , 2020, Cancers.

[5]  R. Moriggl,et al.  Direct Targeting Options for STAT3 and STAT5 in Cancer , 2019, Cancers.

[6]  R. Siebert,et al.  JAK/STAT-Activating Genomic Alterations Are a Hallmark of T-PLL , 2019, Cancers.

[7]  S. Mustjoki,et al.  Twins with different personalities: STAT5B—but not STAT5A—has a key role in BCR/ABL-induced leukemia , 2019, Leukemia.

[8]  P. Gunning,et al.  A functional in vitro assay for screening inhibitors of STAT5B phosphorylation , 2019, Journal of pharmaceutical and biomedical analysis.

[9]  B. Bain,et al.  Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia , 2018, Leukemia.

[10]  J. Iqbal,et al.  Molecular Insights Into Pathogenesis of Peripheral T Cell Lymphoma: a Review , 2018, Current Hematologic Malignancy Reports.

[11]  R. Moriggl,et al.  A haunted beast: Targeting STAT5BN642H in T-Cell Neoplasia , 2018, Molecular & cellular oncology.

[12]  T. Haferlach,et al.  Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2 , 2018, Haematologica.

[13]  Jun Liu,et al.  CSF3R T618I, ASXL1 G942 fs and STAT5B N642H trimutation co‐contribute to a rare chronic neutrophilic leukaemia manifested by rapidly progressive leucocytosis, severe infections, persistent fever and deep venous thrombosis , 2018, British journal of haematology.

[14]  C. Bock,et al.  STAT5BN642H is a driver mutation for T cell neoplasia , 2017, The Journal of clinical investigation.

[15]  B. Bain,et al.  Recurrent activating STAT 5 B N 642 H mutation in myeloid neoplasms 1 with eosinophilia , 2018 .

[16]  S. Mustjoki,et al.  Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL , 2018, Nature Communications.

[17]  Jisung Park,et al.  High‐throughput thermofluor‐based assays for inhibitor screening of STAT SH2 domains , 2017, Journal of pharmaceutical and biomedical analysis.

[18]  T Aittokallio,et al.  Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling , 2017, Leukemia.

[19]  L. Trentin,et al.  STAT3 mutation impacts biological and clinical features of T-LGL leukemia , 2017, Oncotarget.

[20]  A. Tanay,et al.  Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome , 2017, Proceedings of the National Academy of Sciences.

[21]  T. Waldmann,et al.  Disorders of the JAK/STAT Pathway in T Cell Lymphoma Pathogenesis: Implications for Immunotherapy. , 2017, Annual review of immunology.

[22]  M. Raffeld,et al.  Somatic STAT5b gain-of-function mutations in early onset nonclonal eosinophilia, urticaria, dermatitis, and diarrhea. , 2017, Blood.

[23]  M. Geletu,et al.  Strategies for over-expression and purification of recombinant full length STAT5B in Escherichia coli. , 2017, Protein expression and purification.

[24]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[25]  S. Bortoluzzi,et al.  High incidence of activating STAT5B mutations in CD4-positive T-cell large granular lymphocyte leukemia. , 2016, Blood.

[26]  G. Müller-Newen,et al.  Intramolecular hydrophobic interactions are critical mediators of STAT5 dimerization , 2016, Scientific Reports.

[27]  P. Gaulard,et al.  Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations , 2016, Nature Communications.

[28]  M. Angelopoulou,et al.  Prognostic significance of signal transducer and activator of transcription 5 and 5b expression in Epstein–Barr virus‐positive patients with chronic lymphocytic leukemia , 2016, Cancer medicine.

[29]  A. Prasad,et al.  Identification of Gene Mutations and Fusion Genes in Patients with Sézary Syndrome. , 2016, The Journal of investigative dermatology.

[30]  G. Boucher,et al.  Chemo-genomic interrogation of CEBPA mutated AML reveals recurrent CSF3R mutations and subgroup sensitivity to JAK inhibitors. , 2016, Blood.

[31]  R. Siebert,et al.  Genes encoding members of the JAK‐STAT pathway or epigenetic regulators are recurrently mutated in T‐cell prolymphocytic leukaemia , 2016, British journal of haematology.

[32]  Dachuan Huang,et al.  JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma , 2016, Leukemia.

[33]  A. Trouvé,et al.  How Intrinsic Molecular Dynamics Control Intramolecular Communication in Signal Transducers and Activators of Transcription Factor STAT5 , 2015, PloS one.

[34]  Douglas C. Miller,et al.  Primary CNS T-cell Lymphomas: A Clinical, Morphologic, Immunophenotypic, and Molecular Analysis , 2015, The American journal of surgical pathology.

[35]  Fernando Guerrero,et al.  Tandem SUMO fusion vectors for improving soluble protein expression and purification. , 2015, Protein expression and purification.

[36]  Naomi A. Sengamalay,et al.  Concurrent Mutations in ATM and Genes Associated with Common γ Chain Signaling in Peripheral T Cell Lymphoma , 2015, PloS one.

[37]  J. Byrd,et al.  Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK–STAT pathway in Sézary syndrome , 2015, Nature Communications.

[38]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[39]  J. Biegel,et al.  Emergence of clonal hematopoiesis in the majority of patients with acquired aplastic anemia. , 2015, Cancer genetics.

[40]  Can Alkan,et al.  Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells , 2015, Nature Communications.

[41]  W. Xue,et al.  Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma , 2014, Nature Genetics.

[42]  Suning Chen,et al.  Rare occurrence of a STAT5B N642H mutation in adult T-cell acute lymphoblastic leukemia. , 2015, Cancer genetics.

[43]  T. Rausch,et al.  The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse , 2014, Haematologica.

[44]  K. Elenitoba-Johnson,et al.  Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. , 2014, Blood.

[45]  T. Waldmann,et al.  Frequent STAT5B mutations in γδ hepatosplenic T-cell lymphomas , 2014, Leukemia.

[46]  A. Ganser,et al.  BCR-ABL Affects STAT5A and STAT5B Differentially , 2014, PloS one.

[47]  O. Lohi,et al.  Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia , 2014, Leukemia.

[48]  Stein Aerts,et al.  Comprehensive Analysis of Transcriptome Variation Uncovers Known and Novel Driver Events in T-Cell Acute Lymphoblastic Leukemia , 2013, PLoS genetics.

[49]  N. Reich STATs get their move on. , 2013, JAK-STAT.

[50]  S. Mustjoki,et al.  Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. , 2013, Blood.

[51]  P. D. Adams,et al.  Bulk-solvent and overall scaling revisited: faster calculations, improved results , 2013, Acta crystallographica. Section D, Biological crystallography.

[52]  Brett W. Engelmann,et al.  The language of SH2 domain interactions defines phosphotyrosine‐mediated signal transduction , 2012, FEBS letters.

[53]  J. Darnell,et al.  The JAK-STAT pathway at twenty. , 2012, Immunity.

[54]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[55]  Paul D. Adams,et al.  Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution , 2012, Acta crystallographica. Section D, Biological crystallography.

[56]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[57]  Graeme Winter,et al.  xia2: an expert system for macromolecular crystallography data reduction , 2010 .

[58]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[59]  Paul D. Adams,et al.  Electronic Reprint Applied Crystallography Automatic Multiple-zone Rigid-body Refinement with a Large Convergence Radius Pavel v. Afonine Et Al. · Automatic Multiple-zone Rigid-body Refinement Applied Crystallography Automatic Multiple-zone Rigid-body Refinement with a Large Convergence Radius , 2008 .

[60]  Iannis Aifantis,et al.  CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia , 2009, Nature.

[61]  J. McMurray,et al.  Crystal structure of unphosphorylated STAT3 core fragment. , 2008, Biochemical and biophysical research communications.

[62]  L. Hennighausen,et al.  Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. , 2008, Genes & development.

[63]  M. Teitell,et al.  High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. , 2008, Blood.

[64]  M. Wasik,et al.  STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression , 2007, Nature Medicine.

[65]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[66]  M. Ward,et al.  Purification and identification of the STAT5 protease in myeloid cells. , 2007, The Biochemical journal.

[67]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[68]  S. Becker,et al.  Structure of the Unphosphorylated STAT5a Dimer* , 2005, Journal of Biological Chemistry.

[69]  J. Darnell,et al.  Structural bases of unphosphorylated STAT1 association and receptor binding. , 2005, Molecular cell.

[70]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[71]  Xin-Yuan Fu,et al.  Identification of the Linker-SH2 Domain of STAT as the Origin of the SH2 Domain Using Two-dimensional Structural Alignment* , 2004, Molecular & Cellular Proteomics.

[72]  T. Barrette,et al.  ONCOMINE: a cancer microarray database and integrated data-mining platform. , 2004, Neoplasia.

[73]  W. Leonard,et al.  Stat5 Synergizes with T Cell Receptor/Antigen Stimulation in the Development of Lymphoblastic Lymphoma , 2003, The Journal of experimental medicine.

[74]  M. Wasik,et al.  Role of signal transducer and activator of transcription 5 in nucleophosmin/ anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. , 2001, Cancer research.

[75]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[76]  Berk Hess,et al.  Improving efficiency of large time‐scale molecular dynamics simulations of hydrogen‐rich systems , 1999, Journal of computational chemistry.

[77]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[78]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[79]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[80]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[81]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[82]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[83]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[84]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .