Deriving a Global and Hourly Data Set of Aerosol Optical Depth Over Land Using Data From Four Geostationary Satellites: GOES-16, MSG-1, MSG-4, and Himawari-8

Due to the limitations in the number of satellites and the swath width of satellites (determined by the field of view and height of satellites), it is impossible to monitor global aerosol distribution using polar orbiting satellites at a high frequency. This limits the applicability of aerosol optical depth (AOD) data sets in many fields, such as atmospheric pollutant monitoring and climate change research, where a high-temporal data resolution may be required. Although geostationary satellites have a high–temporal resolution and an extensive observation range, three or more satellites are required to achieve global monitoring of aerosols. In this article, we obtain an hourly and global AOD data set by integrating AOD data sets from four geostationary weather satellites [Geostationary Operational Environmental Satellite (GOES-16), Meteosat Second Generation (MSG-1), MSG-4, and Himawari-8]. The integrated data set will expand the application range beyond the four individual AOD data sets. The integrated geostationary satellite AOD data sets from April to August 2018 were validated using Aerosol Robotic Network (AERONET) data. The data set results were validated against: the mean absolute error, mean bias error, relative mean bias, and root-mean-square error, and values obtained were 0.07, 0.01, 1.08, and 0.11, respectively. The ratio of the error of satellite retrieval within ±( $0.05+ 0.2\times $ AODAERONET) is 0.69. The spatial coverage and accuracy of the MODIS/C61/AOD product released by NASA were also analyzed as a representative of polar orbit satellites. The analysis results show that the integrated AOD data set has similar accuracy to that of the MODIS/AOD data set and has higher temporal resolution and spatial coverage than the MODIS/AOD data set.

[1]  B. Holben,et al.  A spatio‐temporal approach for global validation and analysis of MODIS aerosol products , 2002 .

[2]  Liu Qiyue Aerosol retrieval and atmospheric correction of HJ-1 CCD data over Beijing , 2013 .

[3]  Ying Li,et al.  Joint Retrieval of Aerosol Optical Depth and Surface Reflectance Over Land Using Geostationary Satellite Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[4]  G. Leeuw,et al.  Retrieval of aerosol optical depth over land based on a time series technique using MSG/SEVIRI data , 2012 .

[5]  Christopher Justice,et al.  Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional Reflectances , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Gerrit de Leeuw,et al.  The ADV/ASV AATSR aerosol retrieval algorithm: current status and presentation of a full-mission AOD dataset , 2016, Int. J. Digit. Earth.

[7]  Ute Mueller,et al.  Review of surface particulate monitoring of dust events using geostationary satellite remote sensing , 2018, Atmospheric Environment.

[8]  Philip Watts,et al.  Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory , 2010 .

[9]  Yong Xue,et al.  Technical note: Intercomparison of three AATSR Level 2 (L2) AOD products overChina , 2016 .

[10]  Yunmei Li,et al.  An Improved Land Target-Based Atmospheric Correction Method for Lake Taihu , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  M. Lianou,et al.  Long-term visibility variation in Athens (1931–2013): a proxy forlocal and regional atmospheric aerosol loads , 2016 .

[12]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[13]  Clément Tchawoua,et al.  Impact of anthropogenic aerosols on climate variability over Central Africa by using a regional climate model , 2017 .

[14]  Olga Zawadzka,et al.  Retrieval of Aerosol Optical Depth from Optimal Interpolation Approach Applied to SEVIRI Data , 2014, Remote. Sens..

[15]  H. S. Lim,et al.  Retrieving aerosol optical depth using visible and mid‐IR channels from geostationary satellite MTSAT‐1R , 2008 .

[16]  Nadine Gobron,et al.  Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land , 2005 .

[17]  C. Varotsos Airborne measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere , 2005 .

[18]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  O. Hautecoeur,et al.  Daily estimates of aerosol optical thickness over land surface based on a directional and temporal analysis of SEVIRI MSG visible observations , 2010 .

[20]  Marc Mallet,et al.  Sources and mixing state of summertime background aerosol in the north-western Mediterranean basin , 2017 .

[21]  Li Li,et al.  A Dark Target Method for Himawari-8/AHI Aerosol Retrieval: Application and Validation , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Yiran Peng,et al.  MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison , 2019, Atmospheric Environment.

[23]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Yong Xue,et al.  China Collection 2.0: The aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm , 2014 .

[25]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[26]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[27]  Yong Xue,et al.  Retrieval of aerosol optical depth and surface reflectance over land from NOAA AVHRR data , 2013 .

[28]  Meinrat O. Andreae,et al.  Strong present-day aerosol cooling implies a hot future , 2005, Nature.

[29]  Wenhan Qin,et al.  A fast, accurate algorithm to account for non‐Lambertian surface effects on TOA radiance , 2001 .

[30]  Xingfa Gu,et al.  Synergistic Retrieval of Multitemporal Aerosol Optical Depth Over North China Plain Using Geostationary Satellite Data of Himawari‐8 , 2018 .

[31]  Yong Xue,et al.  Ensemble of ESA/AATSR Aerosol Optical Depth Products Based on the Likelihood Estimate Method With Uncertainties , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Yong Xue,et al.  Retrieval of aerosol optical depth over land surfaces from AVHRR data , 2013 .

[33]  Alexei Lyapustin,et al.  A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States , 2011 .

[34]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[35]  John P. Burrows,et al.  Remote sensing of aerosols over snow using infrared AATSR observations , 2011 .

[36]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[37]  杨红龙 Yang Hong-long,et al.  Analysis of Aerosol Optical Properties and Sources at Shenzhen , 2013 .

[38]  Yan Yin,et al.  Long-term (2002–2014) evolution and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta , 2016 .

[39]  Fengjie Zheng,et al.  Aerosol Optical Depth Retrieval over East Asia Using Himawari-8/AHI Data , 2018, Remote. Sens..

[40]  Xiaoyan Ma,et al.  Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? , 2016 .

[41]  Abdul Basith,et al.  Aerosol optical depth (AOD) retrieval for atmospheric correction in Landsat-8 imagery using second simulation of a satellite signal in the solar spectrum-vector (6SV) , 2019 .

[42]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[43]  Li Shu,et al.  The First Indirect Radiative Forcing of Black Carbon Aerosol and Its Effect on Regional Climate of China , 2009 .

[44]  Alexei Lyapustin,et al.  MODIS Collection 6 MAIAC algorithm , 2018, Atmospheric Measurement Techniques.

[45]  Zhongyi Sun,et al.  A Dark Target Algorithm for the GOSAT TANSO-CAI Sensor in Aerosol Optical Depth Retrieval over Land , 2017, Remote. Sens..

[46]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Brent N. Holben,et al.  Retrieving near‐global aerosol loading over land and ocean from AVHRR , 2017 .

[48]  Gérard Dedieu,et al.  Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images , 2008 .

[49]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[50]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[51]  A. Strahler MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD) Version 5.0 , 1994 .