Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins

In this review we focus on the determination of phase diagrams by computer simulation, with particular attention to the fluid–solid and solid–solid equilibria. The methodology to compute the free energy of solid phases will be discussed. In particular, the Einstein crystal and Einstein molecule methodologies are described in a comprehensive way. It is shown that both methodologies yield the same free energies and that free energies of solid phases present noticeable finite size effects. In fact, this is the case for hard spheres in the solid phase. Finite size corrections can be introduced, although in an approximate way, to correct for the dependence of the free energy on the size of the system. The computation of free energies of solid phases can be extended to molecular fluids. The procedure to compute free energies of solid phases of water (ices) will be described in detail. The free energies of ices Ih, II, III, IV, V, VI, VII, VIII, IX, XI and XII will be presented for the SPC/E and TIP4P models of water. Initial coexistence points leading to the determination of the phase diagram of water for these two models will be provided. Other methods to estimate the melting point of a solid, such as the direct fluid–solid coexistence or simulations of the free surface of the solid, will be discussed. It will be shown that the melting points of ice Ih for several water models, obtained from free energy calculations, direct coexistence simulations and free surface simulations agree within their statistical uncertainty. Phase diagram calculations can indeed help to improve potential models of molecular fluids. For instance, for water, the potential model TIP4P/2005 can be regarded as an improved version of TIP4P. Here we will review some recent work on the phase diagram of the simplest ionic model, the restricted primitive model. Although originally devised to describe ionic liquids, the model is becoming quite popular to describe the behavior of charged colloids. Moreover, the possibility of obtaining fluid–solid equilibria for simple protein models will be discussed. In these primitive models, the protein is described by a spherical potential with certain anisotropic bonding sites (patchy sites). (Some figures in this article are in colour only in the electronic version)

[1]  S. A. Dodds,et al.  Chemical Physics , 1877, Nature.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  P. W. Bridgman Water in the liquid and five solid forms under pressure , 1912 .

[4]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[5]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[6]  L. Pauling The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement , 1935 .

[7]  M. Huggins Solutions of Long Chain Compounds , 1941 .

[8]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[9]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[10]  W. W. Wood,et al.  Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres , 1957 .

[11]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[12]  G. D. Parfitt,et al.  Surface Science , 1965, Nature.

[13]  John F. Nagle,et al.  Lattice Statistics of Hydrogen Bonded Crystals. I. The Residual Entropy of Ice , 1966 .

[14]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[15]  W. G. Hoover,et al.  Use of Computer Experiments to Locate the Melting Transition and Calculate the Entropy in the Solid Phase , 1967 .

[16]  Ilya Prigogine,et al.  Advances in Chemical Physics, Vol. 11 , 1967 .

[17]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[18]  William G. Hoover,et al.  Melting Transition and Communal Entropy for Hard Spheres , 1968 .

[19]  F. Stillinger,et al.  Ion‐Pair Theory of Concentrated Electrolytes. I. Basic Concepts , 1968 .

[20]  J. A. Barker,et al.  Structure of water; A Monte Carlo calculation , 1969 .

[21]  Jean-Pierre Hansen,et al.  Phase Transitions of the Lennard-Jones System , 1969 .

[22]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[23]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[24]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[25]  J. Valleau,et al.  Fluids of spheres containing quadrupoles and dipoles: A study using perturbation theory and Monte Carlo computations , 1976 .

[26]  A. Ladd,et al.  Triple-point coexistence properties of the lennard-jones system , 1977 .

[27]  A. Ladd,et al.  Interfacial and co-existence properties of the Lennard-Jones system at the triple point , 1978 .

[28]  J. Cape,et al.  Molecular dynamics calculation of phase coexistence properties: The soft-sphere melting transition , 1978 .

[29]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[30]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[31]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[32]  F. Abraham,et al.  The phases of two-dimensional matter, their transitions, and solid-state stability: A perspective via computer simulation of simple atomic systems , 1981 .

[33]  R. Howie,et al.  Crystal growth , 1982, Nature.

[34]  S. Rice,et al.  Tests of effective pair potentials for water: Predicted ice structures , 1982 .

[35]  G. Patey,et al.  Fluids of polarizable hard spheres with dipoles and tetrahedral quadrupoles Integral equation results with application to liquid water , 1982 .

[36]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[37]  S. Yip,et al.  Observation of finite-temperature bain transformation (f.c.c. →r b.c.c.) in Monte Carlo simulation of iron , 1983 .

[38]  J. Q. Broughton,et al.  Molecular dynamics investigation of the crystal–fluid interface. III. Dynamical properties of fcc crystal–vapor systems , 1983 .

[39]  E. Davidson,et al.  A proposed antiferroelectric structure for proton ordered ice Ih , 1984 .

[40]  E. Whalley Energies of the phases of ice at zero temperature and pressure , 1984 .

[41]  Effective pair potentials and the structure of ices VIII and IX , 1984 .

[42]  Daan Frenkel,et al.  New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres , 1984 .

[43]  Keith E. Gubbins,et al.  Theory of molecular fluids , 1984 .

[44]  C. Rao,et al.  A Monte Carlo study of crystal structure transformations , 1985 .

[45]  J. Frenken,et al.  Observation of surface melting. , 1985, Physical review letters.

[46]  J. Frenken,et al.  Observation of surface-initiated melting. , 1986, Physical review. B, Condensed matter.

[47]  J. Q. Broughton,et al.  Molecular dynamics of the crystal–fluid interface. V. Structure and dynamics of crystal–melt systems , 1986 .

[48]  P. Pusey,et al.  Phase behaviour of concentrated suspensions of nearly hard colloidal spheres , 1986, Nature.

[49]  Carnevali,et al.  Melting and nonmelting behavior of the Au(111) surface. , 1987, Physical review. B, Condensed matter.

[50]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[51]  Denier van der Gon AW,et al.  Crystal-face dependence of surface melting. , 1987, Physical review letters.

[52]  J. Kolafa,et al.  Monte Carlo simulations on primitive models of water and methanol , 1987 .

[53]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[54]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[55]  K. Wojciechowski Solid phases of two-dimensional hard dumb-bells in the free volume approximation: Crystal-aperiodic-solid phase transition , 1987 .

[56]  V. F. Petrenko,et al.  Physics of Ice , 1999 .

[57]  A. D. J. Haymet,et al.  The ice/water interface: A molecular dynamics simulation study , 1988 .

[58]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[59]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[60]  Felix Franks,et al.  Water science reviews , 1989 .

[61]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[62]  C. Brooks Computer simulation of liquids , 1989 .

[63]  William L. Jorgensen,et al.  Free energy of TIP4P water and the free energies of hydration of CH4 and Cl- from statistical perturbation theory , 1989 .

[64]  P. Kay,et al.  The ice/water interface: A molecular dynamics simulation using the simple point charge model , 1990 .

[65]  D. Frenkel,et al.  Location of melting point at 300 K of nitrogen by Monte Carlo simulation , 1990 .

[66]  S. J. Singer,et al.  Monte Carlo study of fluid-plastic crystal coexistence in hard dumbbells , 1990 .

[67]  T. Boublı́k Equilibrium behaviour of quadrupolar Kihara molecule fluids , 1991 .

[68]  Frenkel,et al.  Nonperiodic solid phase in a two-dimensional hard-dimer system. , 1991, Physical review letters.

[69]  G. Kroes Surface melting of the (0001) face of TIP4P ice , 1992 .

[70]  C. Vega,et al.  On the stability of the plastic crystal phase of hard dumbbell solids , 1992 .

[71]  C. Vega,et al.  Solid–fluid equilibria for hard dumbbells via Monte Carlo simulation , 1992 .

[72]  M. Bienfait Roughening and surface melting transitions: consequences on crystal growth , 1992 .

[73]  H. Eugene Stanley,et al.  Phase behaviour of metastable water , 1992, Nature.

[74]  David A. Kofke,et al.  Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation , 1993 .

[75]  D. Frenkel,et al.  The stability of the AB13 crystal in a binary hard sphere system , 1993 .

[76]  D. Kofke Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line , 1993 .

[77]  D. Frenkel,et al.  Does C60 have a liquid phase? , 1993, Nature.

[78]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[79]  Svishchev,et al.  Crystallization of liquid water in a molecular dynamics simulation. , 1994, Physical review letters.

[80]  E. Lomba,et al.  Role of the interaction range in the shaping of phase diagrams in simple fluids. The hard sphere Yukawa fluid as a case study , 1994 .

[81]  Wang,et al.  Melting line of aluminum from simulations of coexisting phases. , 1994, Physical review. B, Condensed matter.

[82]  Athanassios Z. Panagiotopoulos,et al.  Free energy and phase equilibria for the restricted primitive model of ionic fluids from Monte Carlo simulations , 1994 .

[83]  Daan Frenkel,et al.  Determination of phase diagrams for the hard-core attractive Yukawa system , 1994 .

[84]  R. Lovett Can a Solid be Turned into a Gas without Passing through a First Order Phase Transition , 1995 .

[85]  P. A. Monson,et al.  SOLID-FLUID EQUILIBRIUM IN A NONLINEAR HARD-SPHERE TRIATOMIC MODEL OF PROPANE , 1995 .

[86]  P. Clancy,et al.  Phase equilibria in extended simple point charge ice‐water systems , 1995 .

[87]  Manabe,et al.  Construction and investigation of a hard-sphere crystal-melt interface by a molecular dynamics simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[88]  Brown,et al.  Density-functional theory and atomistic simulation of the hard-sphere melt-solid interface. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[89]  C. Vega,et al.  Solid–fluid equilibria for quadrupolar hard dumbbells via Monte Carlo simulation , 1995 .

[90]  D. Kofke,et al.  Thermodynamic and structural properties of model systems at solid-fluid coexistence: I. Fcc and bcc soft spheres , 1995 .

[91]  P. Clancy,et al.  CALCULATION OF FREE ENERGY FOR MOLECULAR CRYSTALS BY THERMODYNAMIC INTEGRATION , 1995 .

[92]  John S. Wettlaufer,et al.  The premelting of ice and its environmental consequences , 1995 .

[93]  Pieter Rein ten Wolde,et al.  Numerical calculation of the rate of crystal nucleation in a Lennard‐Jones system at moderate undercooling , 1996 .

[94]  George Jackson,et al.  A RE-EXAMINATION OF THE PHASE DIAGRAM OF HARD SPHEROCYLINDERS , 1996 .

[95]  D. Frenkel,et al.  Solid-solid and liquid-solid phase equilibria for the restricted primitive model , 1996 .

[96]  Abascal,et al.  Fluid-solid equilibrium of a charged hard-sphere model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[97]  Pablo G. Debenedetti,et al.  Metastable Liquids: Concepts and Principles , 1996 .

[98]  J. Reimers,et al.  Unit cells for the simulation of hexagonal ice , 1997 .

[99]  R. J. Speedy Pressure of the metastable hard-sphere fluid , 1997 .

[100]  H. Eugene Stanley,et al.  Liquid-Liquid Phase Transition: Evidence from Simulations , 1997 .

[101]  V. Vacek,et al.  Direct Evaluation of Solid–Liquid Equilibria by Molecular Dynamics Using Gibbs-Duhem Integration , 1997 .

[102]  P. A. Monson,et al.  The high density equation of state and solid-fluid equilibrium in systems of freely jointed chains of tangent hard spheres , 1997 .

[103]  Peter G. Bolhuis,et al.  Tracing the phase boundaries of hard spherocylinders , 1997 .

[104]  C. Vega,et al.  Plastic crystal phases of hard dumbbells and hard spherocylinders , 1997 .

[105]  Y. Furukawa,et al.  Anisotropic Surface Melting of an Ice Crystal and Its Relationship to Growth Forms , 1997 .

[106]  N. B. Wilding,et al.  Free energy of crystalline solids: A lattice-switch Monte Carlo method , 1997 .

[107]  D. Frenkel,et al.  Enhancement of protein crystal nucleation by critical density fluctuations. , 1997, Science.

[108]  H. Berendsen,et al.  A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field , 1998 .

[109]  H. Stanley,et al.  The relationship between liquid, supercooled and glassy water , 1998, Nature.

[110]  V. Buch,et al.  Simulations of H2O Solid, Liquid, and Clusters, with an Emphasis on Ferroelectric Ordering Transition in Hexagonal Ice , 1998 .

[111]  Hideki Tanaka Thermodynamic stability and negative thermal expansion of hexagonal and cubic ices , 1998 .

[112]  C. Vega,et al.  Solid–fluid equilibrium for a molecular model with short ranged directional forces , 1998 .

[113]  R. L. Davidchack,et al.  Simulation of the hard-sphere crystal–melt interface , 1998 .

[114]  J. Finney,et al.  The structure of a new phase of ice , 1998, Nature.

[115]  P. Beale,et al.  Solid-liquid equilibrium of dipolar heteronuclear hard dumbbells in a generalized van der Waals theory: Application to methyl chloride , 1998 .

[116]  J. V. Eerden,et al.  Free energy calculations on systems of rigid molecules: An application to the TIP4P model of H2O , 1999 .

[117]  J. Ilja Siepmann,et al.  Monte carlo methods in chemical physics , 1999 .

[118]  R. Sear Phase behavior of a simple model of globular proteins , 1999, cond-mat/9904426.

[119]  Finite-size corrections to the free energies of crystalline solids , 1999, cond-mat/9909162.

[120]  D. Frenkel,et al.  Numerical prediction of the melting curve of n-octane , 1999 .

[121]  Wilding,et al.  Lattice-switch monte carlo method , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[122]  J. Finney,et al.  The structure and ordering of ices III and V , 2000 .

[123]  C. Vega,et al.  Order-disorder transition in the solid phase of a charged hard sphere model. , 2000, Physical review letters.

[124]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[125]  Alan K. Soper,et al.  The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa , 2000 .

[126]  J. Schroer,et al.  Phase behavior of a hard sphere interaction site model of benzene , 2000 .

[127]  Bruce,et al.  Freezing by monte carlo phase switch , 2000, Physical review letters.

[128]  Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum , 2000, cond-mat/0006390.

[129]  Y. Furukawa,et al.  Anisotropy in structural transitions between basal and prismatic faces of ice studied by molecular dynamics simulation , 2000 .

[130]  Hideki Tanaka,et al.  The melting temperature of proton-disordered hexagonal ice: A computer simulation of 4-site transferable intermolecular potential model of water , 2000 .

[131]  P. Madden,et al.  Structure and dynamics at the aluminum solid–liquid interface: An ab initio simulation , 2000 .

[132]  Börje Johansson,et al.  Quasi-Ab initio molecular dynamic study of Fe melting , 2000, Physical review letters.

[133]  J. Schroer,et al.  Phase equilibrium in a quadrupolar hard sphere interaction site model of benzene , 2001 .

[134]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[135]  G. Stell,et al.  Effect of competition between Coulomb and dispersion forces on phase transitions in ionic systems , 2001 .

[136]  Kenichiro Koga,et al.  Formation of ordered ice nanotubes inside carbon nanotubes , 2001, Nature.

[137]  H. Hasse,et al.  Comprehensive study of the vapour–liquid equilibria of the pure two-centre Lennard–Jones plus pointquadrupole fluid , 2001, 0904.3413.

[138]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[139]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[140]  Role of anisotropic interactions in protein crystallization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[141]  B. Trout,et al.  A new approach for studying nucleation phenomena using molecular simulations: Application to CO2 hydrate clathrates , 2002 .

[142]  E. J. Smith,et al.  Dynamics of melting and stability of ice 1h: Molecular-dynamics simulations of the SPC/E model of water , 2002 .

[143]  Homogeneous nucleation in a superheated crystal. Molecular-dynamic simulation , 2002 .

[144]  Simulations of binary hard-sphere crystal-melt interfaces: Interface between a one-component fcc crystal and a binary fluid mixture , 2002, physics/0201007.

[145]  Carlos Vega,et al.  The global phase diagram of the Gay–Berne model , 2002 .

[146]  Xueyu Song,et al.  The melting lines of model systems calculated from coexistence simulations , 2002 .

[147]  Nigel B. Wilding,et al.  A new simulation approach to the freezing transition , 2002 .

[148]  A. Panagiotopoulos Critical parameters of the restricted primitive model , 2002 .

[149]  A. D. Bruce,et al.  Computational Strategies for Mapping Equilibrium Phase Diagrams , 2002 .

[150]  C. Zukoski,et al.  Crystal nucleation rates for particles experiencing anisotropic interactions , 2002 .

[151]  M. Lísal,et al.  An examination of the five-site potential (TIP5P) for water , 2002 .

[152]  P. Cummings,et al.  Vapor-liquid equilibrium simulations of the SCPDP model of water , 2002 .

[153]  M. Barroso,et al.  Solid–fluid coexistence of the Lennard-Jones system from absolute free energy calculations , 2002 .

[154]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[155]  G. Ciccotti,et al.  Solubility of KF in water by molecular dynamics using the Kirkwood integration method , 2002 .

[156]  Shinji Saito,et al.  Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing , 2002, Nature.

[157]  A. Haymet,et al.  Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces , 2002 .

[158]  V. Tchijov,et al.  A molecular dynamics study of ices III and V using TIP4P and TIP5P water models , 2003 .

[159]  P. Jedlovszky,et al.  Temperature of maximum density line of a polarizable water model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[160]  Robin D. Rogers,et al.  Ionic liquids as green solvents : progress and prospects , 2003 .

[161]  J. Ilja Siepmann,et al.  Vapor−Liquid and Vapor−Solid Phase Equilibria of Fullerenes: The Role of the Potential Shape on the Triple Point , 2003 .

[162]  Pablo G. Debenedetti,et al.  Supercooled and glassy water , 2003 .

[163]  Hiroki Nada,et al.  An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O , 2003 .

[164]  A. Galindo,et al.  Fluid–solid equilibria of flexible and linear rigid tangent chains from Wertheim’s thermodynamic perturbation theory , 2003 .

[165]  S. Sandler,et al.  Determination of liquid–solid transition using histogram reweighting method and expanded ensemble simulations , 2003 .

[166]  C. Vega,et al.  The fluid–solid equilibrium for a charged hard sphere model revisited , 2003 .

[167]  Generalized mean spherical approximation for a model of water with dipole, quadrupole, and short-range potential of tetrahedral symmetry , 2003 .

[168]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[169]  Bernhardt L Trout,et al.  Nucleation of hexagonal ice (Ih) in liquid water. , 2003, Journal of the American Chemical Society.

[170]  A. Galindo,et al.  The phase diagram of the two center Lennard-Jones model as obtained from computer simulation and Wertheim's thermodynamic perturbation theory , 2003 .

[171]  Betsy M. Rice,et al.  Molecular dynamics study of the melting of nitromethane , 2003 .

[172]  D. Frenkel,et al.  Calculation of the melting point of NaCl by molecular simulation , 2003 .

[173]  E. D. Sloan,et al.  Fundamental principles and applications of natural gas hydrates , 2003, Nature.

[174]  Dario Alfe,et al.  First-principles simulations of direct coexistence of solid and liquid aluminum , 2003, cond-mat/0308226.

[175]  D. Frenkel,et al.  Fluid-fluid coexistence in colloidal systems with short-ranged strongly directional attraction , 2003 .

[176]  David A. Kofke,et al.  Appropriate methods to combine forward and reverse free-energy perturbation averages , 2003 .

[177]  Vinothan N Manoharan,et al.  Dense Packing and Symmetry in Small Clusters of Microspheres , 2003, Science.

[178]  C. Vega,et al.  Combinatorial entropy and phase diagram of partially ordered ice phases. , 2004, The Journal of chemical physics.

[179]  Jeffrey R Errington,et al.  Solid-liquid phase coexistence of the Lennard-Jones system through phase-switch Monte Carlo simulation. , 2004, The Journal of chemical physics.

[180]  A. Puertas,et al.  Oppositely charged colloidal binary mixtures: a colloidal analog of the restricted primitive model. , 2004, The Journal of chemical physics.

[181]  C. Vega,et al.  Formation of high density amorphous ice by decompression of ice VII and ice VIII at 135 K. , 2004, The Journal of chemical physics.

[182]  C. Vega,et al.  Tracing the phase diagram of the four-site water potential (TIP4P). , 2004, The Journal of chemical physics.

[183]  K. Kawamura,et al.  Molecular-dynamics studies of surface of ice Ih. , 2004, The Journal of chemical physics.

[184]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[185]  A. Galindo,et al.  Computer simulation study of the global phase behavior of linear rigid Lennard-Jones chain molecules: comparison with flexible models. , 2004, The Journal of chemical physics.

[186]  Dietmar Paschek Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models. , 2004, The Journal of chemical physics.

[187]  W. V. van Gunsteren,et al.  Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. , 2004, The Journal of chemical physics.

[188]  H. Dosch,et al.  Interfacial melting of ice in contact with SiO(2). , 2004, Physical review letters.

[189]  C. Vega,et al.  Phase diagram of water from computer simulation. , 2004, Physical review letters.

[190]  J. P. Eerden,et al.  A clear observation of crystal growth of ice from water in a molecular dynamics simulation with a six-site potential model of H2O , 2004 .

[191]  S. Rick A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums. , 2004, The Journal of chemical physics.

[192]  V. Stegailov,et al.  Simulation of Ideal Crystal Superheating and Decay , 2004 .

[193]  X. Zeng,et al.  Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials. , 2004, The Journal of chemical physics.

[194]  S. Sandler,et al.  Determination of fluid--solid transitions in model protein solutions using the histogram reweighting method and expanded ensemble simulations. , 2004, The Journal of chemical physics.

[195]  A. Galindo,et al.  Molecular modeling of flexible molecules. Vapor-liquid and fluid-solid equilibria , 2004 .

[196]  Francesco Sciortino,et al.  Phase diagram of silica from computer simulation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[197]  S. Shellswell,et al.  Solid–liquid coexistence in ionic systems and the properties of the interface , 2004 .

[198]  G. Grochola Constrained fluid λ-integration: Constructing a reversible thermodynamic path between the solid and liquid state , 2004 .

[199]  The Ice/Water Interface: Density–Temperature Phase Diagram for the SPC/E Model of Liquid Water , 2004 .

[200]  J. Finney,et al.  Water? What's so special about it? , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[201]  S. Yoo,et al.  The melting lines of model silicon calculated from coexisting solid-liquid phases. , 2004, The Journal of chemical physics.

[202]  A. Strachan,et al.  Deducing solid–liquid interfacial energy from superheating or supercooling: application to H2O at high pressures , 2005 .

[203]  A. Bartók,et al.  Computer simulation of the 13 crystalline phases of ice. , 2005, The Journal of chemical physics.

[204]  S. Rick Simulations of proton order and disorder in ice Ih. , 2005, The Journal of chemical physics.

[205]  E. Tosatti,et al.  Melting and nonmelting of solid surfaces and nanosystems , 2005, cond-mat/0504680.

[206]  Y. Furukawa,et al.  Anisotropy in growth kinetics at interfaces between proton-disordered hexagonal ice and water: A molecular dynamics study using the six-site model of H2O , 2005 .

[207]  Paul Bartlett,et al.  Three-dimensional binary superlattices of oppositely charged colloids. , 2005, Physical review letters.

[208]  Vladimir V. Stegailov Homogeneous and heterogeneous mechanisms of superheated solid melting and decay , 2005, Comput. Phys. Commun..

[209]  The combined simulation approach of atomistic and continuum models for the thermodynamics of lysozyme crystals. , 2005, The journal of physical chemistry. B.

[210]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[211]  C. Vega,et al.  The melting temperature of the most common models of water. , 2005, The Journal of chemical physics.

[212]  C. Patrick Royall,et al.  Ionic colloidal crystals of oppositely charged particles , 2005, Nature.

[213]  P. A. Monson,et al.  A study of the phase behavior of a simple model of chiral molecules and enantiomeric mixtures. , 2005, The Journal of chemical physics.

[214]  P. B. Shepson,et al.  Molecular dynamics simulations of ice growth from supercooled water , 2005 .

[215]  J. Slovák,et al.  Computer simulation study of metastable ice VII and amorphous phases obtained by its melting. , 2005, The Journal of chemical physics.

[216]  S. Yoo,et al.  Melting temperature of ice Ih calculated from coexisting solid-liquid phases. , 2005, The Journal of chemical physics.

[217]  D. Frenkel,et al.  Modeling the phase diagram of carbon. , 2005, Physical review letters.

[218]  C. Vega,et al.  Relation between the melting temperature and the temperature of maximum density for the most common models of water. , 2005, The Journal of chemical physics.

[219]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[220]  C. Vega,et al.  A potential model for the study of ices and amorphous water: TIP4P/Ice. , 2005, The Journal of chemical physics.

[221]  V. Talanquer Nucleation in a simple model for protein solutions with anisotropic interactions. , 2005, The Journal of chemical physics.

[222]  Phase diagram of silicon from atomistic simulations. , 2005, Physical review letters.

[223]  P. Jungwirth,et al.  Brine rejection from freezing salt solutions: a molecular dynamics study. , 2005, Physical review letters.

[224]  P. Cummings,et al.  From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model. , 2005, The Journal of chemical physics.

[225]  David M. Eike,et al.  Toward a robust and general molecular simulation method for computing solid-liquid coexistence. , 2005, The Journal of chemical physics.

[226]  Physics of solid and liquid alkali halide surfaces near the melting point. , 2005, The Journal of chemical physics.

[227]  B. Henson,et al.  Thermodynamic model of quasiliquid formation on H2O ice: comparison with experiment. , 2005, The Journal of chemical physics.

[228]  C. Vega,et al.  A general purpose model for the condensed phases of water: TIP4P/2005. , 2005, The Journal of chemical physics.

[229]  R. Rosenberg,et al.  Why is ice slippery , 2005 .

[230]  G. Grochola Further application of the constrained fluid λ-integration method , 2005 .

[231]  J. D. Gezelter,et al.  Computational Free Energy Studies of a New Ice Polymorph Which Exhibits Greater Stability than Ice Ih. , 2005, Journal of chemical theory and computation.

[232]  E. Sanz,et al.  The range of meta stability of ice-water melting for two simple models of water , 2005, 0902.3966.

[233]  M. Sweatman Self-referential Monte Carlo method for calculating the free energy of crystalline solids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[234]  Alfons Geiger,et al.  Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models. , 2005, The Journal of chemical physics.

[235]  John S. Wettlaufer,et al.  The physics of premelted ice and its geophysical consequences , 2006 .

[236]  M. Parrinello,et al.  Exploration of NVE classical trajectories as a tool for molecular crystal structure prediction, with tests on ice polymorphs. , 2006, The Journal of chemical physics.

[237]  Xueyu Song,et al.  Crystal-melt interfacial free energies of hard-dumbbell systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[238]  B. Slater,et al.  Proton ordering energetics in ice phases , 2006 .

[239]  Yoshiteru Yonetani,et al.  Liquid water simulation: a critical examination of cutoff length. , 2006, The Journal of chemical physics.

[240]  S. Picaud Dynamics of TIP5P and TIP4P/ice potentials. , 2006, The Journal of chemical physics.

[241]  C. Vega,et al.  The melting temperature of the six site potential model of water. , 2006, The Journal of chemical physics.

[242]  A. Ciach,et al.  Field-theoretic description of ionic crystallization in the restricted primitive model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[243]  A. Bartók,et al.  Limitations of the rigid planar nonpolarizable models of water. , 2006, The Journal of chemical physics.

[244]  Francesco Delogu,et al.  Mechanistic aspects of homogeneous and heterogeneous melting processes. , 2006, The journal of physical chemistry. B.

[245]  Ali Siavosh-Haghighi,et al.  Molecular dynamics simulations of surface-initiated melting of nitromethane. , 2006, The Journal of chemical physics.

[246]  B. Slater,et al.  A blind structure prediction of ice XIV. , 2006, Journal of the American Chemical Society.

[247]  Sheng-Nian Luo,et al.  Molecular dynamics simulations of melting and the glass transition of nitromethane. , 2006, The Journal of chemical physics.

[248]  S. Rick,et al.  The interface response function and melting point of the prism interface of ice Ih using a fluctuating charge model (TIP4P-FQ) , 2006 .

[249]  A. Galindo,et al.  A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate. , 2006, The Journal of chemical physics.

[250]  J. Vatamanu,et al.  Molecular insights into the heterogeneous crystal growth of si methane hydrate. , 2006, The journal of physical chemistry. B.

[251]  A. Laubereau,et al.  Ultrafast superheating and melting of bulk ice , 2006, Nature.

[252]  Toshiko Ichiye,et al.  Soft sticky dipole-quadrupole-octupole potential energy function for liquid water: an approximate moment expansion. , 2006, The Journal of chemical physics.

[253]  Thomas Loerting,et al.  Amorphous ices: experiments and numerical simulations , 2006 .

[254]  Raphaël Lévy Peptide‐Capped Gold Nanoparticles: Towards Artificial Proteins , 2006, Chembiochem : a European journal of chemical biology.

[255]  C. Vega,et al.  Absence of superheating for ice Ih with a free surface: a new method of determining the melting point of different water models , 2006, 1304.5078.

[256]  M. Suter,et al.  Surface properties of water ice at 150-191 K studied by elastic helium scattering. , 2006, The Journal of chemical physics.

[257]  C. Vega,et al.  The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. , 2006, The Journal of chemical physics.

[258]  Determination of the adsorption isotherm of methanol on the surface of ice. An experimental and grand canonical Monte Carlo simulation study. , 2006, Journal of the American Chemical Society.

[259]  C. Vega,et al.  Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice. , 2006, The Journal of chemical physics.

[260]  M. Dijkstra,et al.  CuAu structure in the restricted primitive model and oppositely charged colloids. , 2006, Physical review letters.

[261]  David M. Eike,et al.  Atomistic simulation of solid-liquid coexistence for molecular systems: application to triazole and benzene. , 2006, The Journal of chemical physics.

[262]  K. Gubbins,et al.  Effects of confinement on freezing and melting , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[263]  Graham C McNeil-Watson,et al.  Freezing line of the Lennard-Jones fluid: a phase switch Monte Carlo study. , 2006, The Journal of chemical physics.

[264]  Jianwei Wang,et al.  Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study , 2006 .

[265]  S. Alavi,et al.  Simulations of melting of polyatomic solids and nanoparticles , 2006 .

[266]  C. Vega,et al.  Surface tension of the most popular models of water by using the test-area simulation method. , 2007, The Journal of chemical physics.

[267]  Complete phase behavior of the symmetrical colloidal electrolyte. , 2007, The Journal of chemical physics.

[268]  Manuel I Marqués Proposed high-pressure calorimetric experiment to probe theoretical predictions on the liquid-liquid critical point hypothesis. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[269]  Richard H. Henchman Free energy of liquid water from a computer simulation via cell theory. , 2007, The Journal of chemical physics.

[270]  J. Doye,et al.  Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. , 2006, The Journal of chemical physics.

[271]  C. Vega,et al.  Revisiting the Frenkel-Ladd method to compute the free energy of solids: the Einstein molecule approach. , 2007, The Journal of chemical physics.

[272]  I. Nezbeda,et al.  Efficient multiparticle sampling in Monte Carlo simulations on fluids: application to polarizable models. , 2007, The Journal of chemical physics.

[273]  C. Vega,et al.  Dipole-quadrupole force ratios determine the ability of potential models to describe the phase diagram of water. , 2007, Physical review letters.

[274]  J. Doye,et al.  Phase diagram of model anisotropic particles with octahedral symmetry. , 2007, The Journal of chemical physics.

[275]  Computer simulation of methane hydrate cage occupancy. , 2007, The journal of physical chemistry. B.

[276]  R. Car,et al.  Dipolar correlations and the dielectric permittivity of water. , 2007, Physical review letters.

[277]  P. Jungwirth,et al.  Molecular dynamics simulations of freezing of water and salt solutions , 2007 .

[278]  Calculation of free energies and chemical potentials for gas hydrates using Monte Carlo simulations. , 2007, The journal of physical chemistry. B.

[279]  E. Brodskaya Molecular dynamics simulation of ice nanocluster in supercooled water , 2007 .

[280]  D. Kofke,et al.  Solid‐Fluid Equilibrium: Insights from Simple Molecular Models , 2007 .

[281]  F. Sciortino,et al.  Vapor-liquid coexistence of patchy models: relevance to protein phase behavior. , 2007, The Journal of chemical physics.

[282]  P. Balbuena,et al.  Effects of confinement on small water clusters structure and proton transport. , 2007, The journal of physical chemistry. A.

[283]  Sarah L Price,et al.  Toward the Prediction of Organic Hydrate Crystal Structures. , 2007, Journal of chemical theory and computation.

[284]  C. Vega,et al.  Solubility of KF and NaCl in water by molecular simulation. , 2007, The Journal of chemical physics.

[285]  S. Auerbach,et al.  Further studies of a simple atomistic model of silica: thermodynamic stability of zeolite frameworks as silica polymorphs. , 2007, The Journal of chemical physics.

[286]  System-size dependence of the free energy of crystalline solids. , 2007, The Journal of chemical physics.

[287]  Dongwook Kim,et al.  Cation-pi-anion interaction: a theoretical investigation of the role of induction energies. , 2007, The journal of physical chemistry. A.

[288]  A. Galindo,et al.  Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations. , 2007, The journal of physical chemistry. B.

[289]  E. Maginn,et al.  Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride. , 2007, The Journal of chemical physics.

[290]  N. G. Almarza Computation of the free energy of solids. , 2007, The Journal of chemical physics.

[291]  C. Vega,et al.  The melting point of hexagonal ice (Ih) is strongly dependent on the quadrupole of the water models. , 2007, Physical chemistry chemical physics : PCCP.

[292]  F. Sciortino,et al.  Gas–liquid phase coexistence in a tetrahedral patchy particle model , 2007 .

[293]  Yuko Okamoto,et al.  Residual entropy of ordinary ice from multicanonical simulations , 2006, cond-mat/0609211.

[294]  K. Jordan,et al.  Molecular dynamics simulations of methane hydrate using polarizable force fields. , 2007, The journal of physical chemistry. B.

[295]  X. Zeng,et al.  Solid-Liquid Interfacial Free Energy of Water:  A Molecular Dynamics Simulation Study. , 2007, Journal of chemical theory and computation.

[296]  C. Vega,et al.  Properties of ices at 0 K: a test of water models. , 2007, The Journal of chemical physics.

[297]  L. Sesé Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. I. Thermodynamic results. , 2007, The Journal of chemical physics.

[298]  Bernd A. Berg,et al.  Numerical calculation of the combinatorial entropy of partially ordered ice. , 2007, The Journal of chemical physics.

[299]  F. Saija,et al.  Phase diagram of Gaussian-core nematics. , 2007, The Journal of chemical physics.

[300]  P. Rodrigues,et al.  Phase diagrams of alkali halides using two interaction models: a molecular dynamics and free energy study. , 2007, The Journal of chemical physics.

[301]  Zhongwu Zhou,et al.  Role of nonadditive forces on the structure and properties of liquid water. , 2007, The Journal of chemical physics.

[302]  J. Doye,et al.  Controlling crystallization and its absence: proteins, colloids and patchy models. , 2007, Physical chemistry chemical physics : PCCP.

[303]  Diamond stabilization of ice multilayers at human body temperature. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[304]  J. Schijf,et al.  Geochimica et Cosmochimica Acta , 2008 .

[305]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.