Quantum teleportation over 143 kilometres using active feed-forward

The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.

[1]  Rupert Ursin,et al.  High-fidelity transmission of entanglement over a high-loss free-space channel , 2009, 0902.2015.

[2]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[3]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[4]  A. Zeilinger,et al.  Communications: Quantum teleportation across the Danube , 2004, Nature.

[5]  Dong Yang,et al.  Experimental free-space quantum teleportation , 2010 .

[6]  Christian Kurtsiefer,et al.  Free-space quantum key distribution with entangled photons , 2006 .

[7]  Yoon-Ho Kim,et al.  Ultra-low noise single-photon detector based on Si avalanche photodiode. , 2011, The Review of scientific instruments.

[8]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[9]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[10]  A. Zeilinger,et al.  Long-distance quantum communication with entangled photons using satellites , 2003, quant-ph/0305105.

[11]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[12]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[13]  N. Gisin,et al.  Quantum Communication , 2007, quant-ph/0703255.

[14]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[15]  Sergei P. Kulik,et al.  Experimental entanglement concentration and universal Bell-state synthesizer , 2003 .

[16]  Christian Kurtsiefer,et al.  Eliminating Spectral Distinguishability in Ultrafast Spontaneous Parametric Down-conversion , 2009, 0905.3849.

[17]  N. Lütkenhaus,et al.  Maximum efficiency of a linear-optical Bell-state analyzer , 2001 .

[18]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[19]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[20]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[21]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[22]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[23]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[24]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[25]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[26]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[27]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[28]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[29]  Richard J. Hughes,et al.  Practical free-space quantum key distribution over 10 km in daylight and at night , 2002, quant-ph/0206092.

[30]  J. Rarity,et al.  Ground to satellite secure key exchange using quantum cryptography , 2002 .

[31]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[32]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[33]  Paul G. Kwiat,et al.  Free-space quantum key distribution in daylight , 2000 .

[34]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[35]  Rupert Ursin,et al.  Feasibility of 300 km quantum key distribution with entangled states , 2009, 1007.4645.

[36]  A. Zeilinger,et al.  Long-Distance Free-Space Distribution of Quantum Entanglement , 2003, Science.

[37]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[38]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[39]  P R Tapster,et al.  Quantum cryptography: A step towards global key distribution , 2002, Nature.

[40]  Andrew G. White,et al.  Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.

[41]  P. Villoresi,et al.  Experimental verification of the feasibility of a quantum channel between space and Earth , 2008, 0803.1871.

[42]  Rupert Ursin,et al.  Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.