Cell-type specific innervation of cortical pyramidal cells at their apical dendrites

We investigated the synaptic innervation of apical dendrites of cortical pyramidal cells in a region between layers (L) 1 and 2 using 3-D electron microscopy applied to four cortical regions in mouse. We found the relative inhibitory input at the apical dendrite’s main bifurcation to be more than 2-fold larger for L2 than L3 and L5 thick-tufted pyramidal cells. Towards the distal tuft dendrites in upper L1, the relative inhibitory input was at least about 2-fold larger for L5 pyramidal cells than for all others. Only L3 pyramidal cells showed homogeneous inhibitory input fraction. The inhibitory-to-excitatory synaptic ratio is thus specific for the types of pyramidal cells. Inhibitory axons preferentially innervated either L2 or L3/5 apical dendrites, but not both. These findings describe connectomic principles for the control of pyramidal cells at their apical dendrites and support differential computational properties of L2, L3 and subtypes of L5 pyramidal cells in cortex.

[1]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[2]  B. Kolb,et al.  Behavioural and anatomical studies of the posterior parietal cortex in the rat , 1987, Behavioural Brain Research.

[3]  M. Larkum,et al.  Active cortical dendrites modulate perception , 2016, Science.

[4]  J Rinzel,et al.  Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. , 1973, Biophysical journal.

[5]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[6]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[7]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[8]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[9]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[10]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[11]  Matthew E Larkum,et al.  Inhibition of dendritic Ca2+ spikes by GABAB receptors in cortical pyramidal neurons is mediated by a direct Gi/o‐βγ‐subunit interaction with Cav1 channels , 2013, The Journal of physiology.

[12]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[13]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[14]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Moritz Helmstaedter,et al.  SegEM: Efficient Image Analysis for High-Resolution Connectomics , 2015, Neuron.

[16]  N. Spruston,et al.  Synapse Distribution Suggests a Two-Stage Model of Dendritic Integration in CA1 Pyramidal Neurons , 2009, Neuron.

[17]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[18]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[19]  Louis K. Scheffer,et al.  Automated Alignment of Imperfect EM Images for Neural Reconstruction , 2013 .

[20]  J. Bolz,et al.  Morphological types of projection neurons in layer 5 of cat visual cortex , 1990, The Journal of comparative neurology.

[21]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[23]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[24]  Giulio Tononi,et al.  Ultrastructural evidence for synaptic scaling across the wake/sleep cycle , 2017, Science.

[25]  Andrei Rozov,et al.  Developmental Changes in Electrophysiological Properties and a Transition from Electrical to Chemical Coupling between Excitatory Layer 4 Neurons in the Rat Barrel Cortex , 2016, Front. Neural Circuits.

[26]  Muneyuki Ito,et al.  Premature bifurcation of the apical dendritic trunk of vibrissa‐responding pyramidal neurones of X‐irradiated rat neocortex , 1998, The Journal of physiology.

[27]  J. Staiger,et al.  Morphological Characteristics of Electrophysiologically Characterized Layer Vb Pyramidal Cells in Rat Barrel Cortex , 2016, PloS one.

[28]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[29]  Kevan A. C. Martin,et al.  Structure and function of a neocortical synapse , 2019, Nature.

[30]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[31]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions , 1995, The Journal of comparative neurology.

[32]  M. Helmstaedter,et al.  Large-volume en-bloc staining for electron microscopy-based connectomics , 2015, Nature Communications.

[33]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[34]  Philipp Otto,et al.  webKnossos: efficient online 3D data annotation for connectomics , 2017, Nature Methods.

[35]  J. Bolz,et al.  Morphology of identified projection neurons in layer 5 of rat visual cortex , 1988, Neuroscience Letters.

[36]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[37]  K. Hasegawa,et al.  Comparison of the Upper Marginal Neurons of Cortical Layer 2 with Layer 2/3 Pyramidal Neurons in Mouse Temporal Cortex , 2017, Front. Neuroanat..

[38]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[39]  M. Larkum,et al.  The Time Window for Generation of Dendritic Spikes by Coincidence of Action Potentials and EPSPs is Layer Specific in Somatosensory Cortex , 2012, PloS one.

[40]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[41]  Patrick van der Smagt,et al.  SynEM, automated synapse detection for connectomics , 2017, eLife.

[42]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[43]  Andrew S. Johnson,et al.  Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex , 2015, Cerebral cortex.

[44]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[45]  Moritz Helmstaedter,et al.  FluoEM, virtual labeling of axons in three-dimensional electron microscopy data for long-range connectomics , 2018, eLife.

[46]  F. Karube,et al.  The Diversity of Cortical Inhibitory Synapses , 2016, Front. Neural Circuits.

[47]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[48]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[49]  J Rinzel,et al.  Transient response in a dendritic neuron model for current injected at one branch. , 1974, Biophysical journal.

[50]  Elly Nedivi,et al.  Clustered Dynamics of Inhibitory Synapses and Dendritic Spines in the Adult Neocortex , 2012, Neuron.

[51]  Johannes J. Letzkus,et al.  Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons , 2018, Neuron.

[52]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[53]  Idan Segev,et al.  Principles Governing the Operation of Synaptic Inhibition in Dendrites , 2012, Neuron.

[54]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[55]  Hanchuan Peng,et al.  Whole-neuron synaptic mapping reveals local balance between excitatory and inhibitory synapse organization , 2018, bioRxiv.

[56]  M. Helmstaedter,et al.  Axonal synapse sorting in medial entorhinal cortex , 2017, Nature.

[57]  Arno C. Schmitt,et al.  Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A , 2011, Proceedings of the National Academy of Sciences.

[58]  Satoru Kondo,et al.  Neocortical Inhibitory Terminals Innervate Dendritic Spines Targeted by Thalamocortical Afferents , 2007, The Journal of Neuroscience.

[59]  Mark S. Cembrowski,et al.  Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells , 2016, Neuron.

[60]  Moritz Helmstaedter,et al.  Dense connectomic reconstruction in layer 4 of the somatosensory cortex , 2019, Science.

[61]  Claire E. J. Cheetham,et al.  Pansynaptic Enlargement at Adult Cortical Connections Strengthened by Experience , 2012, Cerebral cortex.

[62]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.