Design and evaluation of group-specific oligonucleotide probes for quantitative analysis of intestinal ecosystems: their application to assessment of equine colonic microflora.

[1]  J. Doré,et al.  Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs. , 2002, International journal of systematic and evolutionary microbiology.

[2]  Thomas D. Leser,et al.  Culture-Independent Analysis of Gut Bacteria: the Pig Gastrointestinal Tract Microbiota Revisited , 2002, Applied and Environmental Microbiology.

[3]  R. Joerger,et al.  16S rRNA-Based Analysis of Microbiota from the Cecum of Broiler Chickens , 2002, Applied and Environmental Microbiology.

[4]  H. Flint,et al.  Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes , 2001 .

[5]  P. Clifton,et al.  Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. , 2001, Physiological reviews.

[6]  Y. Benno,et al.  Diet-Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR , 2001, Applied and Environmental Microbiology.

[7]  J. Gordon,et al.  Molecular analysis of commensal host-microbial relationships in the intestine. , 2001, Science.

[8]  Y. Benno,et al.  Rumen Bacterial Community Transition During Adaptation to High-grain Diet , 2000 .

[9]  M. Peterka,et al.  Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. , 2000, FEMS microbiology ecology.

[10]  T. Schmidt,et al.  rRNA Operon Copy Number Reflects Ecological Strategies of Bacteria , 2000, Applied and Environmental Microbiology.

[11]  H. Flint,et al.  Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut , 2000, Applied and Environmental Microbiology.

[12]  A. Richardson,et al.  Molecular Analysis of the Microbial Diversity Present in the Colonic Wall, Colonic Lumen, and Cecal Lumen of a Pig , 1999, Applied and Environmental Microbiology.

[13]  J. Doré,et al.  Direct Analysis of Genes Encoding 16S rRNA from Complex Communities Reveals Many Novel Molecular Species within the Human Gut , 1999, Applied and Environmental Microbiology.

[14]  F. Dewhirst,et al.  Phylogeny of the Defined Murine Microbiota: Altered Schaedler Flora , 1999, Applied and Environmental Microbiology.

[15]  G. Fonty,et al.  Identification of Ruminococcus flavefaciens as the Predominant Cellulolytic Bacterial Species of the Equine Cecum , 1999, Applied and Environmental Microbiology.

[16]  T. Schmidt,et al.  Phylogenetic diversity of termite gut spirochaetes. , 1999, Environmental microbiology.

[17]  Y. Benno,et al.  Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries , 1999 .

[18]  J. Leadbetter,et al.  Acetogenesis from H2 plus CO2 by spirochetes from termite guts. , 1999, Science.

[19]  E. Zoetendal,et al.  Temperature Gradient Gel Electrophoresis Analysis of 16S rRNA from Human Fecal Samples Reveals Stable and Host-Specific Communities of Active Bacteria , 1998, Applied and Environmental Microbiology.

[20]  Gerwin C. Raangs,et al.  Variations of Bacterial Populations in Human Feces Measured by Fluorescent In Situ Hybridization with Group-Specific 16S rRNA-Targeted Oligonucleotide Probes , 1998, Applied and Environmental Microbiology.

[21]  R. Whitehead,et al.  Short-chain fatty acids inhibit intestinal trefoil factor gene expression in colon cancer cells. , 1998, American journal of physiology. Gastrointestinal and liver physiology.

[22]  R. Forster,et al.  Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. , 1998, Anaerobe.

[23]  J. Doré,et al.  Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations. , 1998, Systematic and applied microbiology.

[24]  U. Göbel,et al.  Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. , 1997, FEMS microbiology reviews.

[25]  G. Macfarlane,et al.  Collaborative JPEN‐Clinical Nutrition Scientific Publications Role of intestinal bacteria in nutrient metabolism , 1997 .

[26]  G. Tannock,et al.  Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains , 1997, Applied and environmental microbiology.

[27]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[28]  G. Macfarlane,et al.  Colonic microflora: nutrition and health. , 1997, Nutrition.

[29]  J. Nocek Bovine acidosis: implications on laminitis. , 1997, Journal of dairy science.

[30]  R. Forster,et al.  Group-specific 16S rRNA hybridization probes for determinative and community structure studies of Butyrivibrio fibrisolvens in the rumen , 1997, Applied and environmental microbiology.

[31]  P. Kaufmann,et al.  Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR , 1997, Applied and environmental microbiology.

[32]  D. Stahl,et al.  Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyses using rRNA‐targeted oligonucleotide probes , 1997 .

[33]  D. Stahl,et al.  Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies , 1996, Applied and environmental microbiology.

[34]  K. Wilson,et al.  Human colonic biota studied by ribosomal DNA sequence analysis , 1996, Applied and environmental microbiology.

[35]  H. König,et al.  Phylogenetic Analysis and In Situ Identification of Uncultivated Spirochetes from the Hindgut of the Termite Mastotermes darwiniensis , 1996 .

[36]  L. Poulsen,et al.  Phylogeny of not-yet-cultured spirochetes from termite guts , 1996, Applied and environmental microbiology.

[37]  T. Kudo,et al.  Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus , 1996, Applied and environmental microbiology.

[38]  D. Stahl,et al.  Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations , 1995, Applied and environmental microbiology.

[39]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[40]  R. Amann,et al.  Taxon Specific Hybridization Probes for Fiber-digesting Bacteria Suggest Novel Gut-associated Fibrobacter , 1994 .

[41]  P. Lawson,et al.  The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. , 1994, International journal of systematic bacteriology.

[42]  F. Dewhirst,et al.  Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria , 1994, Journal of bacteriology.

[43]  E. Stackebrandt,et al.  Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification , 1993, Journal of bacteriology.

[44]  D A Stahl,et al.  Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms , 1993, Applied and environmental microbiology.

[45]  E. N. Bergman Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. , 1990, Physiological reviews.

[46]  B. A. Dehority,et al.  Effects of an abrupt diet change from hay to concentrate on microbial numbers and physical environment in the cecum of the pony , 1988, Applied and environmental microbiology.

[47]  B Flesher,et al.  Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology , 1988, Applied and environmental microbiology.

[48]  H. Garner,et al.  Lactic acidosis: a factor associated with equine laminitis. , 1977, Journal of animal science.

[49]  C. Stevens,et al.  Sites of organic acid production and absorption in the equine gastrointestinal tract. , 1974, The American journal of physiology.

[50]  J. Doré,et al.  Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. , 2001, Systematic and applied microbiology.

[51]  B L Maidak,et al.  The RDP-II (Ribosomal Database Project) , 2001, Nucleic Acids Res..

[52]  T. Nagaraja,et al.  Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers. , 1998, Journal of animal science.

[53]  F. Owens,et al.  Acidosis in cattle: a review. , 1998, Journal of animal science.

[54]  G. Macfarlane,et al.  Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. , 1997, Scandinavian journal of gastroenterology. Supplement.

[55]  A. Salyers,et al.  Bacteroides of the human lower intestinal tract. , 1984, Annual review of microbiology.