Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation

For many real-world optimization problems, the robustness of a solution is of great importance in addition to the solution's quality. By robustness, we mean that small deviations from the original design, e.g., due to manufacturing tolerances, should be tolerated without a severe loss of quality. One way to achieve that goal is to evaluate each solution under a number of different scenarios and use the average solution quality as fitness. However, this approach is often impractical, because the cost for evaluating each individual several times is unacceptable. In this paper, we present a new and efficient approach to estimating a solution's expected quality and variance. We propose to construct local approximate models of the fitness function and then use these approximate models to estimate expected fitness and variance. Based on a variety of test functions, we demonstrate empirically that our approach significantly outperforms the implicit averaging approach, as well as the explicit averaging approaches using existing estimation techniques reported in the literature

[1]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[2]  M. Tjornfelt-Jensen,et al.  Robust solutions to job shop problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  S. Ranji Ranjithan,et al.  Chance-constrained genetic algorithms , 1999 .

[4]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[5]  J. Gentle Numerical Linear Algebra for Applications in Statistics , 1998 .

[6]  Indraneel Das,et al.  ROBUSTNESS OPTIMIZATION FOR CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS , 2000 .

[7]  Bernhard Sendhoff,et al.  Comparing neural networks and Kriging for fitness approximation in evolutionary optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[8]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[9]  Yaochu Jin,et al.  A Critical Survey of Performance Indices for Multi-Objective Optimisation , 2003 .

[10]  Mikkel T. Jensen,et al.  Generating robust and flexible job shop schedules using genetic algorithms , 2003, IEEE Trans. Evol. Comput..

[11]  X. Yao Evolutionary Search of Approximated N-dimensional Landscapes , 2000 .

[12]  A. Plotkin,et al.  Robust-Optimal Design of a Lightweight Space Structure Using a Genetic Algorithm , 2003 .

[13]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[14]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[15]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[16]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2000, SCG '00.

[17]  T. Arima,et al.  Aerodynamic Optimization for the Transonic Compressor Stator Blade , 2002 .

[18]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[19]  M. Wand Local Regression and Likelihood , 2001 .

[20]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[21]  Lakhmi C. Jain,et al.  Properties of robust solution searching in multi-dimensional space with genetic algorithms , 1998, 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111).

[22]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[23]  Farrokh Mistree,et al.  A procedure for robust design: Minimizing variations caused by noise factors and control factors , 1996 .

[24]  Adrian Thompson,et al.  Evolutionary techniques for fault tolerance , 1996 .

[25]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[26]  Ian C. Parmee,et al.  Techniques to aid global search in engineering design , 1994, IEA/AIE '94.

[27]  Bernhard Sendhoff,et al.  Trade-off between Optimality and Robustness: An Evolutionary Multiobjective Approach , 2003 .

[28]  Shigeyoshi Tsutsui,et al.  Genetic algorithms with a robust solution searching scheme , 1997, IEEE Trans. Evol. Comput..

[29]  Shigeyoshi Tsutsui,et al.  A Robust Solution Searching Scheme in Genetic Search , 1996, PPSN.

[30]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[31]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[32]  H. Greiner Robust optical coating design with evolutionary strategies. , 1996, Applied optics.

[33]  Tapabrata Ray,et al.  A PARALLEL HYBRID OPTIMIZATION ALGORITHM FOR ROBUST AIRFOIL DESIGN , 2004 .

[34]  Bernhard Sendhoff,et al.  On Evolutionary Optimization with Approximate Fitness Functions , 2000, GECCO.

[35]  Jürgen Branke,et al.  Creating Robust Solutions by Means of Evolutionary Algorithms , 1998, PPSN.

[36]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[37]  Dirk V. Arnold,et al.  Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.

[38]  Qingfu Zhang,et al.  On the convergence of a class of estimation of distribution algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[39]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[40]  J. Branke Reducing the sampling variance when searching for robust solutions , 2001 .

[41]  Timothy M. Mauery,et al.  COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION , 1998 .

[42]  Christine A. Shoemaker,et al.  Local function approximation in evolutionary algorithms for the optimization of costly functions , 2004, IEEE Transactions on Evolutionary Computation.

[43]  Robert H. Storer,et al.  Robustness Measures and Robust Scheduling for Job Shops , 1994 .

[44]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[45]  Bernhard Sendhoff,et al.  Structure optimization of neural networks for evolutionary design optimization , 2005, Soft Comput..

[46]  T. W. Layne,et al.  A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models , 1998 .

[47]  P. Alfeld Scattered data interpolation in three or more variables , 1989 .

[48]  Jürgen Branke,et al.  Faster convergence by means of fitness estimation , 2005, Soft Comput..

[49]  T. Ray Constrained robust optimal design using a multiobjective evolutionary algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[50]  Bernhard Sendhoff,et al.  A critical survey of performance indices for multi-objective optimisation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[51]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[52]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[53]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[54]  Bernhard Sendhoff,et al.  The Influence of stochastic Quality Functions on Evolutionary Search , 2002, SEAL.

[55]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[56]  Thomas Bäck,et al.  Robust design of multilayer optical coatings by means of evolutionary algorithms , 1998, IEEE Trans. Evol. Comput..

[57]  Phil Husbands,et al.  A Comparison of Search Techniques on a Wing-Box Optimisation Problem , 1996, PPSN.

[58]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[59]  S. Ranji Ranjithan,et al.  Chance-Constrained Optimization Using Genetic Algorithms: An Application in Air Quality Management , 2001 .

[60]  Bernhard Sendhoff,et al.  Optimisation of a Stator Blade Used in a Transonic Compressor Cascade with Evolution Strategies , 2000 .

[61]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.