Electrical conduction in chalcogenide glasses of phase change memory

Amorphous chalcogenides have been extensively studied over the last half century due to their application in rewritable optical data storage and in non-volatile phase change memory devices. Yet, the nature of the observed non-ohmic conduction in these glasses is still under debate. In this review, we consolidate and expand the current state of knowledge related to dc conduction in these materials. An overview of the pertinent experimental data is followed by a review of the physics of localized states that are peculiar to chalcogenide glasses. We then describe and evaluate twelve relevant transport mechanisms with conductivities that depend exponentially on the electric field. The discussed mechanisms include various forms of Poole-Frenkel ionization, Schottky emission, hopping conduction, field-induced delocalization of tail states, space-charge-limited current, field emission, percolation band conduction, and transport through crystalline inclusions. Most of the candidates provide more or less satisfact...

[1]  Doo Seok Jeong,et al.  A study on the temperature dependence of the threshold switching characteristics of Ge2Sb2Te5 , 2010 .

[2]  S. Elliott The mechanism for a.c. conduction in chalcogenide semiconductors: Electronic or atomic? , 1979 .

[3]  Monte Carlo simulation of charge transport in amorphous chalcogenides , 2009 .

[4]  Characteristics at high electric fields in amorphous Ge2Sb2Te5 films , 2008 .

[5]  Daniele Ielmini,et al.  Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses , 2008 .

[6]  Edgar J. Evans,et al.  Conduction and Electrical Switching in Amorphous Chalcogenide Semiconductor Films , 1969 .

[7]  Guido Torelli,et al.  A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage , 2009, IEEE Journal of Solid-State Circuits.

[8]  H. Poole XXIV. On the temperature variation of the electrical conductivity of mica , 1917 .

[9]  J. Rodgers,et al.  A 4-Mb Non-volatile Chalcogenide Random Access Memory designed for space applications: Project status update , 2008, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[10]  R. Bez,et al.  4-Mb MOSFET-selected /spl mu/trench phase-change memory experimental chip , 2005, IEEE Journal of Solid-State Circuits.

[11]  A comparative study on electrical transport properties of thin films of Ge1Sb2Te4 and Ge2Sb2Te5 phase-change materials , 2011 .

[12]  S. Elliott Medium-range order in amorphous materials: documented cases , 1987 .

[13]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[14]  M. Lampert,et al.  Current injection in solids , 1970 .

[15]  D. Emin,et al.  Small-Polaron Hopping Motion in Some Chalcogenide Glasses , 1972 .

[16]  Philip W. Anderson,et al.  Model for the Electronic Structure of Amorphous Semiconductors , 1975 .

[17]  Marc Kastner,et al.  Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures , 1993 .

[18]  A. Owen,et al.  Electronic conduction and switching in chalcogenide glasses , 1973 .

[19]  I. Karpov,et al.  A unified model of nucleation switching , 2009 .

[20]  W. Phillips Two-electron excitations and the low temperature properties of glasses , 1976 .

[21]  V. Karpov,et al.  Localized states in glasses , 1989 .

[22]  A Unified Hopping Model for Subthreshold Current of Phase-Change Memories in Amorphous State , 2010, IEEE Electron Device Letters.

[23]  B. G. Bagley,et al.  The field dependent mobility of localized electronic carriers , 1970 .

[24]  Mechanism of the isotermic amorphous-to-crystalline phase transition in Ge:Sb:Te ternary alloys , 2001 .

[25]  J. Marshall,et al.  The mobility of photo-induced carriers in disordered As2Te3 and As30Te48Si12Ge10 , 1975 .

[26]  M. El-Samanoudy Modified Poole–Frenkel mechanisms in Ge25BixSb15−xS60 thin films , 2003 .

[27]  Electrical conductivity of amorphous films of chalcogenide compounds in high electric fields , 2009 .

[28]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[29]  M. Raǐkh,et al.  Transmittancy Fluctuations in Randomly Non-Uniform Barriers and Incoherent Mesoscopics , 1991 .

[30]  Yu.A. Firsov Small Polarons: Transport Phenomena , 2007 .

[31]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[32]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[33]  M. Knotek Temperature and thickness dependence of low temperature transport in amorphous silicon thin films: A comparison to amorphous germanium , 1975 .

[34]  T. Kleinpenning 1/ƒ Noise in solid state single injection diodes , 1978 .

[35]  A. R. Long Frequency-dependent loss in amorphous semiconductors , 1982 .

[36]  Robert M. Hill,et al.  Poole-Frenkel conduction in amorphous solids , 1971 .

[37]  B. Gleixner,et al.  A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[38]  B. Rufflé,et al.  Boson peak and its relation to acoustic attenuation in glasses. , 2007, Physical review letters.

[39]  M. Pollak,et al.  A Note on the Anisotropy of the Conductivity in Thin Amorphous Films , 1973 .

[40]  Dae-Hwan Kang,et al.  Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases , 2005 .

[41]  H. J. D. Wit,et al.  The electrical conduction of glassy As2Se3 at high fields , 1972 .

[42]  Konstantin K. Likharev,et al.  Single Electronics: A Correlated Transfer of Single Electrons and Cooper Pairs in Systems of Small Tunnel Junctions , 1991 .

[43]  Victor G. Karpov,et al.  Possible mechanisms for1/fnoise in chalcogenide glasses: A theoretical description , 2009 .

[44]  S. Kostylev,et al.  Reversible Switching in Thin Amorphous Chalcogenide Films—Electronic Effects , 1973 .

[45]  Phase Change Memory with Chalcogenide Selector (PCMS): Characteristic Behaviors, Physical Models and Key Material Properties , 2010 .

[46]  Conductivity of layers of a chalcogenide glassy semiconductor Ge2Sb2Te5 in high electric fields , 2009 .

[47]  H. Wong,et al.  Investigation of Trap Spacing for the Amorphous State of Phase-Change Memory Devices , 2011, IEEE Transactions on Electron Devices.

[48]  Michel Devoret,et al.  Single Charge Tunneling , 1992 .

[49]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[50]  R. Street,et al.  States in the Gap in Glassy Semiconductors , 1975 .

[51]  M. Thompson,et al.  High-field effects in chalcogenide switching glasses , 1976 .

[52]  Nonlinearity of current-voltage characteristics of chalcogenide glassy semiconductors, caused by multiphonon tunnel ionization of negative-U-centers , 2009 .

[53]  M. Kastner,et al.  Defect chemistry of lone-pair semiconductors , 1978 .

[54]  R. Gupta,et al.  Potential fluctuations in phase change memory materials , 2011 .

[55]  J. Frenkel,et al.  On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors , 1938 .

[56]  H. Fritzsche Why are chalcogenide glasses the materials of choice for Ovonic switching devices , 2007 .