A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites

Excellent mechanical, thermal, and electrical properties of carbon nanotubes (CNTs) and nanofibers (CNFs) have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. After achieving a considerable success in utilizing these unique materials in various polymeric matrices, recently tremendous interest is also being noticed on developing CNT and CNF reinforced cement-based composites. However, the problems related to nanomaterial dispersion also exist in case of cementitious composites, impairing successful transfer of nanomaterials' properties into the composites. Performance of cementitious composites also depends on their microstructure which is again strongly influenced by the presence of nanomaterials. In this context, the present paper reports a critical review of recent literature on the various strategies for dispersing CNTs and CNFs within cementitious matrices and the microstructure and mechanical properties of resulting nanocomposites.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  M. Dresselhaus,et al.  Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers , 2003 .

[3]  Lawrence T. Drzal,et al.  Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers , 2006 .

[4]  V. G. Shevchenko,et al.  Effect of Carbon Nanotube Functionalization on the Structural and Mechanical Properties of Polypropylene/MWCNT Composites , 2008 .

[5]  Halit Yazici,et al.  The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete , 2008 .

[6]  David Hui,et al.  The revolutionary creation of new advanced materials - Carbon nanotube composites , 2002 .

[7]  M. Burghard,et al.  Dispersions of individual single-walled carbon nanotubes of high length. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[8]  Ángel Palomo,et al.  Corrosion resistance in activated fly ash mortars , 2005 .

[9]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[10]  M. Ward,et al.  Effect of silica fume and fly ash on heat of hydration of Portland cement , 2002 .

[11]  Ivan Odler,et al.  6 – Hydration, Setting and Hardening of Portland Cement , 1998 .

[12]  Tsong Yen,et al.  Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete , 2007 .

[13]  P. Ajayan,et al.  Nanocomposite Science And Technology , 2003 .

[14]  F. J. Baeza,et al.  Efecto de la adición de nanofibras de carbono en las propiedades mecánicas y de durabilidad de materiales cementantes , 2012 .

[15]  Gengying Li,et al.  Properties of high-volume fly ash concrete incorporating nano-SiO2 , 2004 .

[16]  M. Krishtal,et al.  Effect of hydrogen absorption and corrosion cracking on stress relaxation of steel , 1977 .

[17]  Nii O. Attoh-Okine,et al.  Nanotechnology in Civil Infrastructure : A Paradigm Shift , 2011 .

[18]  Zhu Pan,et al.  Carbon nanotube–cement composites: A retrospect , 2011 .

[19]  Edwin L. Thomas,et al.  High-Concentration Dispersion of Single-Wall Carbon Nanotubes , 2004 .

[20]  T W Bremner,et al.  The influence of shrinkage-cracking on the drying behaviour of White Portland cement using Single-Point Imaging (SPI). , 1998, Solid state nuclear magnetic resonance.

[21]  Chuck Zhang,et al.  Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites , 2004 .

[22]  J. Ou,et al.  Abrasion resistance of concrete containing nano-particles for pavement , 2006 .

[23]  Z. Iqbal,et al.  Functionalization of carbon nanotubes with amines and enzymes , 2005 .

[24]  Xia Xin,et al.  Dispersing Carbon Nanotubes in Aqueous Solutions by a Starlike Block Copolymer , 2008 .

[25]  Uttandaraman Sundararaj,et al.  A review of vapor grown carbon nanofiber/polymer conductive composites , 2009 .

[26]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[27]  S. H. Alsayed,et al.  Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar , 2011 .

[28]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..

[29]  F. Pacheco-Torgal,et al.  Nanotechnology: Advantages and drawbacks in the field of construction and building materials , 2011 .

[30]  Faezeh Azhari,et al.  Cement-based sensors for structural health monitoring , 2008 .

[31]  Kae‐Long Lin,et al.  Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar. , 2008, Journal of environmental management.

[32]  A. Chaipanich,et al.  Compressive strength and microstructure of carbon nanotubes–fly ash cement composites , 2010 .

[33]  Vesa Penttala,et al.  Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites , 2008 .

[34]  Rodney S. Ruoff,et al.  Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes , 2000 .

[35]  Zhang Yunsheng,et al.  Interaction Between Sulfate and Chloride Solution Attack of Concretes With and Without Fly Ash , 2007 .

[36]  Arjun G. Yodh,et al.  High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water , 2003 .

[37]  Hui Li,et al.  The influence of surfactants on the processing of multi‐walled carbon nanotubes in reinforced cement matrix composites , 2009 .

[38]  Dale P. Bentz,et al.  Influence of silica fume on diffusivity in cement-based materials: II. Multi-scale modeling of concrete diffusivity , 2000 .

[39]  Ardavan Yazdanbakhsh,et al.  The theoretical maximum achievable dispersion of nanoinclusions in cement paste , 2012 .

[40]  Vesa Penttala,et al.  A novel cement-based hybrid material , 2009 .

[41]  W. J. Woo,et al.  EMI Shielding Effectiveness of Carbon Nanofiber Filled Poly(vinyl alcohol) Coating Materials , 2001 .

[42]  Shiling Yuan,et al.  Dispersing carbon nanotubes in aqueous solutions by a silicon surfactant: Experimental and molecular dynamics simulation study , 2009 .

[43]  Giuseppe Andrea Ferro,et al.  Influence of carbon nanotubes structure on the mechanical behavior of cement composites , 2009 .

[44]  A. Ćwirzeń,et al.  Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite , 2012 .

[45]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[46]  Dale P. Bentz,et al.  Influence of silica fume on diffusivity in cement-based materials: I. Experimental and computer modeling studies on cement pastes , 2000 .

[47]  Jang‐Kyo Kim,et al.  Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites , 2007 .

[48]  W. Jo,et al.  Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate) , 2008 .

[49]  Xiaohua Zhao,et al.  Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites , 2007 .

[50]  Vladimir Zalmanovich Mordkovich,et al.  Carbon Nanofibers: A New Ultrahigh-Strength Material for Chemical Technology , 2003 .

[51]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[52]  Maria S. Konsta-Gdoutos,et al.  Mechanical Properties and Nanostructure of Cement-Based Materials Reinforced with Carbon Nanofibers and Polyvinyl Alcohol (PVA) Microfibers , 2010, SP-270: Advances in the Material Science of Concrete.

[53]  I. Szleifer,et al.  Polymers and carbon nanotubes : dimensionality, interactions and nanotechnology , 2005 .

[54]  J. Ou,et al.  Microstructure of cement mortar with nano-particles , 2004 .

[55]  Shana O Kelley,et al.  Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[56]  Bo Yeon Lee,et al.  Influence of TiO2 Nanoparticles on Early C3S Hydration , 2009, SP-267: Nanotechnology of Concrete: The Next Big Thing is Small.

[57]  Suryasarathi Bose,et al.  Carbon Nanotube Based Composites- A Review , 2005 .

[58]  Philip Kim,et al.  Structure and Electronic Properties of Carbon Nanotubes , 2000 .

[59]  C. Bittencourt,et al.  Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments , 2005 .

[60]  Ardavan Yazdanbakhsh,et al.  Carbon Nano Filaments in Cementitious Materials: Some Issues on Dispersion and Interfacial Bond , 2009, SP-267: Nanotechnology of Concrete: The Next Big Thing is Small.

[61]  K. Mukhopadhyay,et al.  Synthesis of coiled/straight carbon nanofibers by catalytic chemical vapor deposition , 2004 .

[62]  W. Jo,et al.  Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol) , 2007 .

[63]  H. Toutanji,et al.  Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete , 1998 .

[64]  Haiqing Peng,et al.  Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. , 2003, Journal of the American Chemical Society.

[65]  S. Wild,et al.  Sulphate Resistance of Metakaolin Mortar , 1998 .

[66]  N. Sahoo,et al.  Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites , 2006 .

[67]  Christopher R. Bowen,et al.  Full factorial design analysis of carbon nanotube polymer-cement composites , 2012 .

[68]  A. Chaipanich,et al.  Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials , 2011 .

[69]  D. Mast,et al.  Functionalization of single-walled carbon nanotubes using isotropic plasma treatment: Resonant Raman spectroscopy study , 2005 .

[70]  D. Ph.,et al.  Multi-scale Performance and Durability of Carbon Nanofiber/Cement Composites , 2009 .

[71]  F. Sanchez Carbon nanofibre/cement composites: challenges and promises as structural materials , 2009 .

[72]  Eil Kwon,et al.  A carbon nanotube/cement composite with piezoresistive properties , 2009 .

[73]  S. Wild,et al.  Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete , 1996 .

[74]  Surendra P. Shah,et al.  Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency , 2013 .

[75]  Rashid K. Abu Al-Rub,et al.  Distribution of Carbon Nanofibers and Nanotubes in Cementitious Composites , 2010 .

[76]  A. Ćwirzeń,et al.  Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials , 2009 .

[77]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[78]  Nemkumar Banthia,et al.  Influence of High-Reactivity Metakaolin and Silica Fume on the Flexural Toughness of High-Performance Steel Fiber Reinforced Concrete , 1998 .

[79]  S. Mitra,et al.  Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. , 2006, Journal of the American Chemical Society.

[80]  S. Motojima,et al.  Preparation, Morphology, and Growth Mechanism of Carbon Nanocoils , 2002 .

[81]  Mary Anne White,et al.  Cement: Its Chemistry and Properties , 2003 .

[82]  Hsu-Chiang Kuan,et al.  Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite , 2007 .

[83]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[84]  Velu Saraswathy,et al.  Evaluation of corrosion resistance of Portland pozzolana cement and fly ash blended cements in pre-cracked reinforced concrete slabs under accelerated testing conditions , 2007 .

[85]  N. Banapurmath,et al.  Experimental investigation of the effect of carbon nanotubes and carbon fibres on the behaviour of plain cement composite beams , 2011 .

[86]  D.D.L. Chung,et al.  Review: Improving cement-based materials by using silica fume , 2002 .

[87]  James F. Bohan Relative strength , 1981 .

[88]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[89]  Y. Qing,et al.  Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume , 2007 .

[90]  Vladimir I. Merkulov,et al.  Patterned growth of individual and multiple vertically aligned carbon nanofibers , 2000 .

[91]  David P. Anderson,et al.  Morphology and modulus of vapor grown carbon nano fibers , 2006 .

[92]  Eil Kwon,et al.  Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites , 2012 .

[93]  Surendra P. Shah,et al.  Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials , 2012 .

[94]  Edward J. Garboczi,et al.  Effects of cement particle size distribution on performance properties of Portland cement-based materials , 1999 .

[95]  Y. Martínez-Rubí,et al.  Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties , 2012, Nanotechnology.

[96]  James J. Beaudoin,et al.  Carbon Nanotubes and their Application in the Construction Industry , 2004 .

[97]  Florence Sanchez,et al.  Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites , 2009 .

[98]  Rashid K. Abu Al-Rub,et al.  Challenges and benefits of utilizing carbon nanofilaments in cementitious materials , 2012 .

[99]  P. Mondal Nanomechanical properties of cementitious materials , 2008 .

[100]  D. Chung Dispersion of Short Fibers in Cement , 2005 .

[101]  J. Ranogajec,et al.  Sulfate corrosion of portland cement-pure and blended with 30% of fly ash , 1996 .

[102]  Gary G. Tibbetts,et al.  A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites , 2007 .

[103]  Markus J Buehler,et al.  A realistic molecular model of cement hydrates , 2009, Proceedings of the National Academy of Sciences.

[104]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[105]  W. Brandl,et al.  Production and characterisation of vapour grown carbon fiber/polypropylene composites , 2004 .

[106]  P. Pötschke,et al.  Carbon nanofibers for composite applications , 2004 .

[107]  M. Bystrzejewski,et al.  Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. , 2010, Journal of colloid and interface science.

[108]  Han Baoguo,et al.  SPECIFIC RESISTANCE AND PRESSURE-SENSITIVITY OF CEMENT PASTE ADMIXING WITH NANO-TiO_2 AND CARBON FIBER , 2004 .

[109]  Albinas Gailius,et al.  Cement Based Foam Concrete Reinforced by Carbon Nanotubes , 2006 .

[110]  J. Luh,et al.  CARBON NANOTUBE/CEMENT COMPOSITES - EARLY RESULTS AND POTENTIAL APPLICATIONS , 2005 .

[111]  Francis Gerard Collins,et al.  The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures , 2012 .

[112]  A. Okotrub,et al.  Comparative study of fluorinated single- and few-wall carbon nanotubes by X-ray photoelectron and X-ray absorption spectroscopy , 2009 .

[113]  M. Yudasaka,et al.  Dispersing Carbon Nanotubes in Water: A Noncovalent and Nonorganic Way , 2004 .

[114]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[115]  I. Szleifer,et al.  Physical Adsorption of Block Copolymers to SWNT and MWNT: A Nonwrapping Mechanism , 2007 .

[116]  Ramasamy Alagirusamy,et al.  A Review on Carbon Epoxy Nanocomposites , 2009 .

[117]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[118]  W. Marsden I and J , 2012 .

[119]  Y. Gun’ko,et al.  Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites , 2008, Nanotechnology.

[120]  Gad Marom,et al.  Dispersions of Surface‐Modified Carbon Nanotubes in Water‐Soluble and Water‐Insoluble Polymers , 2006 .

[121]  Xiaohua Zhao,et al.  Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes , 2005 .

[122]  Rashid K. Abu Al-Rub,et al.  On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites , 2012 .