Commensal Microbiota Promote Lung Cancer Development via γδ T Cells

[1]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[2]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[3]  T. Jacks,et al.  Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. , 2001, Genes & development.

[4]  W. Born,et al.  Subset-specific, uniform activation among V gamma 6/V delta 1+ gamma delta T cells elicited by inflammation. , 2004, Journal of leukocyte biology.

[5]  W. Born,et al.  Subset‐specific, uniform activation among Vγ6/Vδ1+ γδ T cells elicited by inflammation , 2004 .

[6]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[8]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[9]  T. Jacks,et al.  Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase , 2009, Nature Protocols.

[10]  A. Hayday,et al.  CD27 is a thymic determinant of the balance between interferon-γ- and interleukin 17–producing γδ T cell subsets , 2009, Nature Immunology.

[11]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[12]  K. Mills,et al.  Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. , 2009, Immunity.

[13]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[14]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[15]  Jean-Luc Coll,et al.  The multiple roles of amphiregulin in human cancer. , 2011, Biochimica et biophysica acta.

[16]  G. Getz,et al.  PathSeq: software to identify or discover microbes by deep sequencing of human tissue , 2011, Nature Biotechnology.

[17]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[18]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[19]  C. Datz,et al.  Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth , 2012, Nature.

[20]  A. Krueger,et al.  Development of interleukin-17-producing γδ T cells is restricted to a functional embryonic wave. , 2012, Immunity.

[21]  E. Elinav,et al.  Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms , 2013, Nature Reviews Cancer.

[22]  K. Akinosoglou,et al.  Infectious complications in patients with lung cancer. , 2013, European review for medical and pharmacological sciences.

[23]  G. Getz,et al.  Inferring tumour purity and stromal and immune cell admixture from expression data , 2013, Nature Communications.

[24]  J. Hoag,et al.  The Microbiology of Postobstructive Pneumonia in Lung Cancer Patients , 2013, Journal of bronchology & interventional pulmonology.

[25]  F. Powrie,et al.  Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model , 2013, The Journal of experimental medicine.

[26]  Ning Leng,et al.  EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments , 2013, Bioinform..

[27]  M. Meyerson,et al.  Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. , 2013, Cell host & microbe.

[28]  P. Vantourout,et al.  Six-of-the-best: unique contributions of γδ T cells to immunology , 2013, Nature Reviews Immunology.

[29]  M. Caetano,et al.  T helper 17 cells play a critical pathogenic role in lung cancer , 2014, Proceedings of the National Academy of Sciences.

[30]  D. Barber,et al.  Intravascular staining for discrimination of vascular and tissue leukocytes , 2014, Nature Protocols.

[31]  M. Cheng,et al.  Microbiota modulate tumoral immune surveillance in lung through a γδT17 immune cell-dependent mechanism. , 2014, Cancer research.

[32]  A. Berns,et al.  Multiple cells-of-origin of mutant K-Ras–induced mouse lung adenocarcinoma , 2014, Proceedings of the National Academy of Sciences.

[33]  Judy H. Cho,et al.  Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory Bowel Disease , 2014, Cell.

[34]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[35]  P. Gestraud,et al.  Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes. , 2014, Cell reports.

[36]  Yeojun Yun,et al.  Environmentally Determined Differences in the Murine Lung Microbiota and Their Relation to Alveolar Architecture , 2014, PloS one.

[37]  B. Marsland,et al.  Host–microorganism interactions in lung diseases , 2014, Nature Reviews Immunology.

[38]  Steven J. M. Jones,et al.  Comprehensive molecular profiling of lung adenocarcinoma , 2014, Nature.

[39]  Wendy S. Garrett,et al.  Cancer and the microbiota , 2015, Science.

[40]  B. Silva-Santos,et al.  γδ T cells in cancer , 2015, Nature Reviews Immunology.

[41]  D. Kovalovsky,et al.  PLZF Controls the Development of Fetal-Derived IL-17+Vγ6+ γδ T Cells , 2015, The Journal of Immunology.

[42]  Zhi-yu Wang,et al.  A retrospective study of risk and prognostic factors in relation to lower respiratory tract infection in elderly lung cancer patients. , 2015, American journal of cancer research.

[43]  D. Kovalovsky PLZF Controls the Development of Fetal-Derived IL-17Vg6 gd T Cells , 2015 .

[44]  Lisa M. Coussens,et al.  The Basis of Oncoimmunology , 2016, Cell.

[45]  K. E. Visser,et al.  Neutrophils in cancer: neutral no more , 2016, Nature Reviews Cancer.

[46]  Chandra Sekhar Pedamallu,et al.  Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas , 2016, Nature Genetics.

[47]  D. Cui,et al.  IL-17A-producing T cells are associated with the progression of lung adenocarcinoma , 2016, Oncology reports.

[48]  D. Bar-Sagi,et al.  γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation , 2016, Cell.

[49]  Aviv Regev,et al.  A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells , 2016, Cell.

[50]  F. Martinez,et al.  The Microbiome and the Respiratory Tract. , 2016, Annual review of physiology.

[51]  Francisco J. Sánchez-Rivera,et al.  Keap1 loss promotes Kras-driven lung cancer and results in a dependence on glutaminolysis , 2017, Nature Medicine.

[52]  S. Roy,et al.  Microbes and Cancer. , 2017, Annual review of immunology.

[53]  B. Silva-Santos,et al.  IL-17+ γδ T cells as kick-starters of inflammation , 2017, Nature Immunology.

[54]  Francisco J. Sánchez-Rivera,et al.  A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma , 2017, Nature.

[55]  A. Sheh,et al.  Interleukin-22 drives nitric oxide-dependent DNA damage and dysplasia in a murine model of colitis-associated cancer , 2017, Mucosal Immunology.

[56]  Donna Neuberg,et al.  Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer , 2017, Science.

[57]  B. Marsland,et al.  Lung Homeostasis: Influence of Age, Microbes, and the Immune System. , 2017, Immunity.

[58]  Development of a Stable Lung Microbiome in Healthy Neonatal Mice , 2018, Microbial Ecology.

[59]  R. Collins,et al.  Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial , 2017, The Lancet.

[60]  Le Cong,et al.  A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells , 2017, Cell.

[61]  Laurence Zitvogel,et al.  Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors , 2018, Science.

[62]  R. Hynes,et al.  Antibodies and methods for immunohistochemistry of extracellular matrix proteins. , 2018, Matrix biology : journal of the International Society for Matrix Biology.

[63]  E. Le Chatelier,et al.  Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients , 2018, Science.

[64]  Roy S. Herbst,et al.  The biology and management of non-small cell lung cancer , 2018, Nature.