Structural analysis of complex materials using the atomic pair distribution function — a practical guide

Abstract Modern materials and their properties are often characterized by varying degrees of disorder. Routine crystallographic structure solution only reveals the average structure. The study of Bragg and diffuse scattering yields the local atomic arrangements holding the key to understanding increasingly complex materials. In this paper we review the pair distribution function technique used to unravel the local structure. We aim to give a practical overview and make this method easily accessible to the wider scientific community.

[1]  J. Kirkwood Order and Disorder in Liquid Solutions. , 1939 .

[2]  T. Proffen,et al.  PDFgetX: a program for obtaining the atomic pair distribution function from X-ray powder diffraction data , 2001 .

[3]  M. Thorpe,et al.  High Real-Space Resolution Measurement of the Local Structure of Ga{sub 1-x}In{sub x}As Using X-Ray Diffraction , 1999, cond-mat/9906099.

[4]  M. Kanatzidis,et al.  Application of Atomic Pair Distribution Function Analysis to Materials with Intrinsic Disorder. Three-Dimensional Structure of Exfoliated-Restacked WS2: Not Just a Random Turbostratic Assembly of Layers , 2000 .

[5]  T. Egami Electron-lattice interaction in cuprates , 1996 .

[6]  T. Proffen,et al.  Measurement of the local Jahn-Teller distortion in LaMnO 3.006 , 1999, cond-mat/9903084.

[7]  Brian H. Toby,et al.  Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials , 1992 .

[8]  Evidence for charge localization in the ferromagnetic phase of La{sub 1-x}Ca{sub x}MnO{sub 3} from high real-space-resolution x-ray diffraction , 1999, cond-mat/9907329.

[9]  Cai,et al.  Length mismatch in random semiconductor alloys. II. Structural characterization of pseudobinaries. , 1992, Physical review. B, Condensed matter.

[10]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[11]  T. Welberry,et al.  Interpretation of diffuse X-ray scattering via models of disorder , 1994 .

[12]  A. Cheetham,et al.  Building a high resolution total scattering powder diffractometer – upgrade of NPD at MLNSC , 2002 .

[13]  G. Kwei,et al.  Lattice effects observed by the isotope-difference pair density function of the YBa[sub 2][number sign]63/65Cu[sub 3]O[sub 6. 92] superconductor , 1999 .

[14]  Martin T. Dove,et al.  Application of the reverse Monte Carlo method to crystalline materials , 2001 .

[15]  S J L Billinge,et al.  Structure of intercalated Cs in zeolite ITQ-4: an array of metal ions and correlated electrons confined in a pseudo-1D nanoporous host. , 2002, Physical review letters.

[16]  Michael Thorpe,et al.  Local structure from diffraction , 2002 .

[17]  T. Proffen,et al.  Measuring Correlated Atomic Motion Using X-ray Diffraction , 1999 .

[18]  Local structure of In0.5Ga0.5As from joint high-resolution and differential pair distribution function analysis , 1999, cond-mat/9911293.

[19]  J. Mikkelsen,et al.  Local structure of pseudobinary semiconductor alloys: An x-ray absorption fine structure study , 1989 .

[20]  Valeri Petkov,et al.  RAD, a program for analysis of X‐ray diffraction data from amorphous materials for personal computers , 1989 .

[21]  T. Egami,et al.  Charge localization in CMR manganites: Renormalization of polaron energy by stress field , 2002 .

[22]  P. F. Peterson,et al.  PDFgetN: a user‐friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data , 2000 .

[23]  Salmon,et al.  Defects in a disordered world: the structure of glassy GeSe2 , 2000, Physical review letters.

[24]  T. Egami Atomic Correlations in Non-Periodic Matter , 1990 .

[25]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[26]  Hwang,et al.  Lattice effects on the magnetoresistance in doped LaMnO3. , 1995, Physical review letters.

[27]  T. Egami,et al.  LOCAL LATTICE DISTORTIONS IN LA1-XSRXMNO3 STUDIED BY PULSED NEUTRON SCATTERING , 1999 .

[28]  M. Thorpe,et al.  Local atomic structure of semiconductor alloys using pair distribution functions , 1997 .

[29]  Thompson,et al.  Direct Observation of Lattice Polaron Formation in the Local Structure of La1-xCaxMnO3. , 1996, Physical review letters.

[30]  R. Blessing,et al.  The first protein crystal structure determined from high-resolution X-ray powder diffraction data: a variant of T3R3 human insulin-zinc complex produced by grinding. , 2000, Acta crystallographica. Section D, Biological crystallography.

[31]  Astronomy,et al.  Chemical short range order obtained from the atomic pair distribution function , 2002, cond-mat/0201428.

[32]  Cai,et al.  Length mismatch in random semiconductor alloys. I. General theory for quaternaries. , 1992, Physical review. B, Condensed matter.

[33]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[34]  Simon J. L. Billinge,et al.  Improved measures of quality for the atomic pair distribution function , 2003 .

[35]  D. Keen,et al.  Diffuse Neutron Scattering from Crystalline Materials , 2001 .

[36]  S. Billinge,et al.  From Crystals to Nanocrystals: Semiconductors and Beyond , 2002 .

[37]  F. Frey Diffuse scattering from periodic and aperiodic crystals , 1997 .

[38]  S. Dixit,et al.  Molecular segregation observed in a concentrated alcohol–water solution , 2002, Nature.

[39]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[40]  Simon J. L. Billinge,et al.  PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .

[41]  M. Kanatzidis,et al.  Structure of V(2)O(5)*nH(2)O xerogel solved by the atomic pair distribution function technique. , 2002, Journal of the American Chemical Society.

[42]  T. Proffen,et al.  DISCUS: a program for diffuse scattering and defect‐structure simulation , 1997 .

[43]  T. Proffen,et al.  Local Atomic Strain in ZnSe1 xTex from High Real Space Resolution Neutron Pair Distribution Function Measurements , 2000, cond-mat/0009364.

[44]  T. Proffen Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation , 2000, cond-mat/0002388.

[45]  H. Röder,et al.  Local Jahn-Teller distortion in La 1 − x Sr x MnO 3 observed by pulsed neutron diffraction , 1997 .

[46]  R. V. Von Dreele Binding of N-acetylglucosamine to chicken egg lysozyme: a powder diffraction study. , 2001, Acta Crystallographica Section D: Biological Crystallography.

[47]  Martin T. Dove,et al.  Dynamic structural disorder in cristobalite: neutron total scattering measurement and reverse Monte Carlo modelling , 2001 .