Towards personalized prostate cancer therapy using delta-reachability analysis

Recent clinical studies suggest that the efficacy of hormone therapy for prostate cancer depends on the characteristics of individual patients. In this paper, we develop a computational framework for identifying patient-specific androgen ablation therapy schedules for postponing the potential cancer relapse. We model the population dynamics of heterogeneous prostate cancer cells in response to androgen suppression as a nonlinear hybrid automaton. We estimate personalized kinetic parameters to characterize patients and employ δ-reachability analysis to predict patient-specific therapeutic strategies. The results show that our methods are promising and may lead to a prognostic tool for prostate cancer therapy.

[1]  Joseph A. Smith,et al.  Final results of the Canadian prospective phase II trial of intermittent androgen suppression for men in biochemical recurrence after radiotherapy for locally advanced prostate cancer: Clinical parameters , 2007 .

[2]  Trachette L. Jackson,et al.  A mathematical investigation of the multiple pathways to recurrent prostate cancer: comparison with experimental data. , 2004, Neoplasia.

[3]  Nicholas Bruchovsky,et al.  Locally advanced prostate cancer--biochemical results from a prospective phase II study of intermittent androgen suppression for men with evidence of prostate-specific antigen recurrence after radiotherapy. , 2007 .

[4]  Edmund M. Clarke,et al.  Satisfiability modulo ODEs , 2013, 2013 Formal Methods in Computer-Aided Design.

[5]  Gouhei Tanaka,et al.  A Mathematical Model of Intermittent Androgen Suppression for Prostate Cancer , 2008, J. Nonlinear Sci..

[6]  David Hsu,et al.  Statistical Model Checking Based Calibration and Analysis of Bio-pathway Models , 2013, CMSB.

[7]  Edmund M. Clarke,et al.  δ-Complete Decision Procedures for Satisfiability over the Reals , 2012, IJCAR.

[8]  Nicholas Bruchovsky,et al.  Final results of the Canadian prospective phase II trial of intermittent androgen suppression for men in biochemical recurrence after radiotherapy for locally advanced prostate cancer , 2006, Cancer.

[9]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[10]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[11]  B. Ross,et al.  Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules , 2014, Cell.

[12]  David Hsu,et al.  Probabilistic approximations of ODEs based bio-pathway dynamics , 2011, Theor. Comput. Sci..

[13]  Kazuyuki Aihara,et al.  Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. , 2010, Journal of theoretical biology.

[14]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[15]  Thomas L. Jackson,et al.  A mathematical model of prostate tumor growth and androgen-independent relapse , 2003 .

[16]  Kazuyuki Aihara,et al.  Piecewise affine systems modelling for optimizing hormone therapy of prostate cancer , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Alessandro Cimatti,et al.  SMT-Based Verification of Hybrid Systems , 2012, AAAI.

[18]  Kazuyuki Aihara,et al.  Hybrid optimal scheduling for intermittent androgen suppression of prostate cancer. , 2010, Chaos.

[19]  Edmund M. Clarke,et al.  dReal: An SMT Solver for Nonlinear Theories over the Reals , 2013, CADE.

[20]  Alberto Griggio,et al.  Parameter synthesis with IC3 , 2013, 2013 Formal Methods in Computer-Aided Design.

[21]  Wei Chen,et al.  dReach: δ-Reachability Analysis for Hybrid Systems , 2015, TACAS.

[22]  Edmund M. Clarke,et al.  Delta-Decidability over the Reals , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[23]  M. Gleave,et al.  [Theoretical considerations and initial clinical results of intermittent hormone treatment of patients with advanced prostatic carcinoma]. , 1995, Der Urologe. Ausg. A.

[24]  Thao Dang,et al.  Parameter synthesis for polynomial biological models , 2014, HSCC.

[25]  Sergiy Bogomolov,et al.  Planning as Model Checking in Hybrid Domains , 2014, AAAI.

[26]  P. S. Thiagarajan,et al.  Approximate probabilistic analysis of biopathway dynamics , 2012, Bioinform..

[27]  Avner Friedman,et al.  Mathematical modeling of prostate cancer progression in response to androgen ablation therapy , 2011, Proceedings of the National Academy of Sciences.

[28]  Alessandro Cimatti,et al.  SMT-based scenario verification for hybrid systems , 2013, Formal Methods Syst. Des..

[29]  Sumit Kumar Jha,et al.  A Counterexample-Guided Approach to Parameter Synthesis for Linear Hybrid Automata , 2008, HSCC.

[30]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[31]  Edmund M. Clarke,et al.  Parameter Synthesis for Cardiac Cell Hybrid Models Using δ-Decisions , 2014, CMSB.

[32]  G. Hamilton Advances in Prostate Cancer , 2013 .

[33]  A. Jemal,et al.  Cancer statistics, 2013 , 2013, CA: a cancer journal for clinicians.

[34]  Andreas Witzel,et al.  Cancer hybrid automata: Model, beliefs and therapy , 2014, Inf. Comput..

[35]  Nicholas Bruchovsky,et al.  Locally advanced prostate cancer—biochemical results from a prospective phase II study of intermittent androgen suppression for men with evidence of prostate‐specific antigen recurrence after radiotherapy , 2007, Cancer.

[36]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[37]  S. Goldenberg,et al.  Intermittent androgen suppression for prostate cancer , 2010, Nature Reviews Urology.

[38]  Xin Chen,et al.  Flow*: An Analyzer for Non-linear Hybrid Systems , 2013, CAV.

[39]  Travis Portz,et al.  A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy , 2012 .