暂无分享,去创建一个
Gianmarco Manzini | Simone Scacchi | Ilario Mazzieri | Marco Verani | Paola Francesca Antonietti | P. Antonietti | M. Verani | G. Manzini | S. Scacchi | I. Mazzieri
[1] J. Waals. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .
[2] Peter Wriggers,et al. A virtual element method for contact , 2016 .
[3] Charles M. Elliott,et al. A second order splitting method for the Cahn-Hilliard equation , 1989 .
[4] L. Beirao da Veiga,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .
[5] 高等学校計算数学学報編輯委員会編,et al. 高等学校計算数学学報 = Numerical mathematics , 1979 .
[6] Thirupathi Gudi,et al. An interior penalty method for a sixth-order elliptic equation , 2011 .
[7] G. Manzini,et al. Extended virtual element method for the Laplace problem with singularities and discontinuities , 2019, Computer Methods in Applied Mechanics and Engineering.
[8] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[9] C. M. Elliott,et al. Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .
[10] L. B. D. Veiga,et al. A virtual element method with arbitrary regularity , 2014 .
[11] Alessandro Russo,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.
[12] C. Lovadina,et al. A virtual element method for the von Kármán equations , 2021, ESAIM: Mathematical Modelling and Numerical Analysis.
[13] Lorenzo Mascotto,et al. Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.
[14] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .
[15] C. M. Elliott,et al. A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .
[16] Filippo Gazzola,et al. Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains , 2010 .
[17] David Mora,et al. Virtual element for the buckling problem of Kirchhoff–Love plates , 2020 .
[18] John E. Hilliard,et al. Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .
[19] G. Burton. Sobolev Spaces , 2013 .
[20] Gianmarco Manzini,et al. Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .
[21] Paola F. Antonietti,et al. The conforming virtual element method for polyharmonic problems , 2018, Comput. Math. Appl..
[22] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[23] F. Gazzola,et al. Polyharmonic Boundary Value Problems , 2010 .
[24] D. Komatitsch,et al. Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .
[25] Thomas J. R. Hughes,et al. A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework , 2014 .
[26] Mira Schedensack,et al. A New Discretization for mth-Laplace Equations with Arbitrary Polynomial Degrees , 2015, SIAM J. Numer. Anal..
[27] L. Donatella Marini,et al. Virtual Element Method for fourth order problems: L2-estimates , 2016, Comput. Math. Appl..
[28] G. Vacca,et al. The p- and hp-versions of the virtual element method for elliptic eigenvalue problems , 2018, Comput. Math. Appl..
[29] Ezio Faccioli,et al. Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations , 1996 .
[30] L. Beirao da Veiga,et al. Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.
[31] Heng Chi,et al. On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration , 2019, Computer Methods in Applied Mechanics and Engineering.
[32] T. Hughes,et al. Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .
[33] David Mora,et al. A virtual element method for the vibration problem of Kirchhoff plates , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.
[34] K. Lipnikov,et al. The nonconforming virtual element method , 2014, 1405.3741.
[35] P. Antonietti,et al. The virtual element method for linear elastodynamics models. Design, analysis, and implementation , 2019, ArXiv.
[36] L. Beirao da Veiga,et al. A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.
[37] J. S. Rowlinson,et al. Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .
[38] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[39] Simone Scacchi,et al. A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..
[40] Felipe Lepe,et al. A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.
[41] Richard S. Falk,et al. A mixed-Lagrange multiplier finite element method for the polyharmonic equation , 1985 .
[42] Charles M. Elliott,et al. Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .
[43] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[44] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[45] Gianmarco Manzini,et al. Virtual Element Methods for Elliptic Problems on Polygonal Meshes , 2017 .
[46] David Mora,et al. A virtual element method for the transmission eigenvalue problem , 2018, Mathematical Models and Methods in Applied Sciences.
[47] P. F. Antonietti,et al. The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.
[48] G. Azzone,et al. Bridge closure in the road network of Lombardy: a spatio-temporal analysis of the socio-economic impacts , 2022, Statistical Methods & Applications.
[49] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[50] Simone Vantini,et al. The Importance of Being a Band: Finite-Sample Exact Distribution-Free Prediction Sets for Functional Data , 2021 .
[51] Shaochun Chen,et al. The Morley-Type Virtual Element for Plate Bending Problems , 2018, J. Sci. Comput..
[52] Lorenzo Mascotto,et al. Exponential convergence of the hp virtual element method in presence of corner singularities , 2017, Numerische Mathematik.
[53] A. Russo,et al. New perspectives on polygonal and polyhedral finite element methods , 2014 .
[54] Paola F. Antonietti,et al. A high-order discontinuous Galerkin approach to the elasto-acoustic problem , 2018, Computer Methods in Applied Mechanics and Engineering.
[55] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[56] Stefano Berrone,et al. A Parallel Solver for Large Scale DFN Flow Simulations , 2015, SIAM J. Sci. Comput..
[57] Peter Wriggers,et al. Phase-field modeling of brittle fracture using an efficient virtual element scheme , 2018, Computer Methods in Applied Mechanics and Engineering.
[58] Dietmar Gallistl,et al. Stable splitting of polyharmonic operators by generalized Stokes systems , 2017, Math. Comput..
[59] L. Mascotto,et al. Exploring high-order three dimensional virtual elements: Bases and stabilizations , 2017, Comput. Math. Appl..
[60] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[61] Paola F. Antonietti,et al. High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes , 2018, Computer Methods in Applied Mechanics and Engineering.
[62] Gianmarco Manzini,et al. Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes , 2017, J. Comput. Phys..
[63] G. Manzini,et al. SUPG stabilization for the nonconforming virtual element method for advection–diffusion–reaction equations , 2018, Computer Methods in Applied Mechanics and Engineering.
[64] Richard S. Falk,et al. Basic principles of mixed Virtual Element Methods , 2014 .
[65] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[66] Shaochun Chen,et al. The nonconforming virtual element method for plate bending problems , 2016 .
[67] Gianmarco Manzini,et al. The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..
[68] Gianmarco Manzini,et al. Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.
[69] John W. Barrett,et al. Finite element approximation of a sixth order nonlinear degenerate parabolic equation , 2004, Numerische Mathematik.
[70] Gianmarco Manzini,et al. The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.
[71] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[72] Glaucio H. Paulino,et al. Bridging art and engineering using Escher-based virtual elements , 2015 .
[73] Long Chen,et al. Nonconforming Virtual Element Method for 2mth Order Partial Differential Equations in ℝn , 2018, Math. Comput..
[74] Franco Dassi,et al. A C1 Virtual Element Method on polyhedral meshes , 2018, Comput. Math. Appl..
[75] Monique Dauge,et al. Polynomials in the Sobolev World , 2007 .
[76] Krishna Garikipati,et al. A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..
[77] Axel Voigt,et al. A new phase-field model for strongly anisotropic systems , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[78] Gianmarco Manzini,et al. Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..
[79] Endre Süli,et al. Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..
[80] Ming Wang,et al. Minimal finite element spaces for 2m-th-order partial differential equations in Rn , 2012, Math. Comput..
[81] Stefano Berrone,et al. Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .
[82] Franco Brezzi,et al. Virtual Element Methods for plate bending problems , 2013 .
[83] Xin Liu,et al. A virtual element method for the Cahn-Hilliard problem in mixed form , 2019, Appl. Math. Lett..
[84] Giuseppe Vacca,et al. Virtual Element Methods for hyperbolic problems on polygonal meshes , 2016, Comput. Math. Appl..
[85] Gianmarco Manzini,et al. The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes , 2018, Applications of Mathematics.
[86] Franck Pigeonneau,et al. A Hybrid High-Order Method for the Cahn-Hilliard problem in Mixed Form , 2015, SIAM J. Numer. Anal..
[87] Blanca Ayuso de Dios,et al. Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem , 2013, J. Sci. Comput..
[88] Kyoungsoo Park,et al. Numerical recipes for elastodynamic virtual element methods with explicit time integration , 2019, International Journal for Numerical Methods in Engineering.
[89] K. Cheng. Theory of Superconductivity , 1948, Nature.
[90] Emmanuil H. Georgoulis,et al. A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.
[91] E. Favvas,et al. What is spinodal decomposition , 2008 .
[92] Gianmarco Manzini,et al. Hourglass stabilization and the virtual element method , 2015 .
[93] Gianmarco Manzini,et al. Convergence Analysis of the mimetic Finite Difference Method for Elliptic Problems with Staggered Discretizations of Diffusion Coefficients , 2016, SIAM J. Numer. Anal..
[94] Stig Larsson,et al. THE CAHN-HILLIARD EQUATION , 2007 .
[95] Ilaria Perugia,et al. A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.
[96] A. Quarteroni,et al. Non-conforming high order approximations of the elastodynamics equation , 2012 .
[97] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[98] Feng Chen,et al. Efcient Energy Stable Schemes with Spectral Discretization in Space for Anisotropic Cahn-Hilliard Systems , 2020 .