Square-free graphs with no six-vertex induced path

We elucidate the structure of $(P_6,C_4)$-free graphs by showing that every such graph either has a clique cutset, or a universal vertex, or belongs to several special classes of graphs. Using this result, we show that for any $(P_6,C_4)$-free graph $G$, $\lceil\frac{5\omega(G)}{4}\rceil$ and $\lceil\frac{\Delta(G) + \omega(G) +1}{2}\rceil$ are tight upper bounds for the chromatic number of $G$. Moreover, our structural results imply that every ($P_6$,$C_4$)-free graph with no clique cutset has bounded clique-width, and thus the existence of a polynomial-time algorithm that computes the chromatic number (or stability number) of any $(P_6,C_4)$-free graph.

[1]  Raffaele Mosca Stable Sets in Certain P6-free Graphs , 1999, Discret. Appl. Math..

[2]  Landon Rabern A Note On Reed's Conjecture , 2008, SIAM J. Discret. Math..

[3]  Hal A. Kierstead,et al.  Radius two trees specify χ-bounded classes , 1994, J. Graph Theory.

[4]  Maria Chudnovsky,et al.  Coloring quasi‐line graphs , 2007, J. Graph Theory.

[5]  Udi Rotics,et al.  Edge dominating set and colorings on graphs with fixed clique-width , 2003, Discret. Appl. Math..

[6]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[7]  Maria Chudnovsky,et al.  Coloring square-free Berge graphs , 2019, J. Comb. Theory, Ser. B.

[8]  Paul D. Seymour,et al.  Induced subgraphs of graphs with large chromatic number. I. Odd holes , 2014, J. Comb. Theory, Ser. B.

[9]  A. Gyárfás Problems from the world surrounding perfect graphs , 1987 .

[10]  Johann A. Makowsky,et al.  On the Clique-Width of Graphs with Few P4's , 1999, Int. J. Found. Comput. Sci..

[11]  R. L. Brooks On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Frédéric Maffray,et al.  Coloring (gem, co‐gem)‐free graphs , 2018, J. Graph Theory.

[13]  Steven Chaplick,et al.  On the structure of (pan, even hole)‐free graphs , 2015, J. Graph Theory.

[14]  Maria Chudnovsky,et al.  Substitution and χ-boundedness , 2013, J. Comb. Theory, Ser. B.

[15]  T. Karthick,et al.  Maximal cliques in {P2 UNION P3, C4}-free graphs , 2010, Discret. Math..

[16]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[17]  Andrew D. King Claw-free graphs and two conjectures on omega, delta, and chi , 2009 .

[18]  Daniël Paulusma,et al.  Colouring Square-Free Graphs without Long Induced Paths , 2018, STACS.

[19]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[20]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[21]  Bruce A. Reed,et al.  Bisimplicial vertices in even-hole-free graphs , 2008, J. Comb. Theory, Ser. B.

[22]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[23]  Sheshayya A. Choudum,et al.  Perfect coloring and linearly χ-bound P 6 -free graphs , 2007 .

[25]  Michaël Rao,et al.  MSOL partitioning problems on graphs of bounded treewidth and clique-width , 2007, Theor. Comput. Sci..

[26]  Hal A. Kierstead,et al.  Radius Three Trees in Graphs with Large Chromatic Number , 2004, SIAM J. Discret. Math..

[27]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[28]  Sylvain Gravier,et al.  Coloring the hypergraph of maximal cliques of a graph with no long path , 2003, Discret. Math..

[29]  Andreas Brandstädt,et al.  Gem- And Co-Gem-Free Graphs Have Bounded Clique-Width , 2004, Int. J. Found. Comput. Sci..

[30]  Feodor F. Dragan,et al.  New Graph Classes of Bounded Clique-Width , 2002, Theory of Computing Systems.

[31]  Bruce A. Reed,et al.  A Description of Claw-Free Perfect Graphs , 1999, J. Comb. Theory, Ser. B.

[32]  Hal A. Kierstead,et al.  On-Line and First-Fit Coloring of Graphs That Do Not Induce P5 , 1995, SIAM J. Discret. Math..

[33]  Maria Chudnovsky,et al.  Induced subgraphs of graphs with large chromatic number. VIII. Long odd holes , 2017, J. Comb. Theory, Ser. B.

[34]  Konrad Dabrowski,et al.  Bounding the Clique‐Width of H‐Free Chordal Graphs , 2015, J. Graph Theory.

[35]  Andreas Brandstädt,et al.  On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set Problem , 2005, Theor. Comput. Sci..

[36]  Martin Charles Golumbic,et al.  Trivially perfect graphs , 1978, Discret. Math..

[37]  Maria Chudnovsky Claw-free Graphs VI. Colouring Claw-free Graphs , 2009 .