Solving geometric constraint systems. II. A symbolic approach and decision of Rc-constructibility

This paper reports a geometric constraint-solving approach based on symbolic computation. With this approach, we can compute robust numerical solutions for a set of equations and give complete methods of deciding whether the constraints are independent and whether a constraint system is over-constraint. Based on symbolic computation, we also have a decision procedure for the problem of deciding whether a constrained diagram can be constructed with ruler and compass (rc-constructibility).

[1]  John Rischard Rice,et al.  Mathematical Software , 1971 .

[2]  Walter Whiteley,et al.  The Union of Matroids and the Rigidity of Frameworks , 1988, SIAM J. Discret. Math..

[3]  Glenn A. Kramer,et al.  Solving Geometric Constraint Systems , 1990, AAAI.

[4]  Gary L. Miller,et al.  Solvability by radicals is in polynomial time , 1983, STOC.

[5]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[6]  L. A. G. Dresel,et al.  Elementary Numerical Analysis , 1966 .

[7]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[8]  K. Kondo,et al.  Algebraic method for manipulation of dimensional relationships in geometric models , 1992, Comput. Aided Des..

[9]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[10]  Gao Xiao-Shan ON THE THEORY OF RESOLVENTS AND ITS APPLICATIONS , 1999 .

[11]  David R. Musser,et al.  Multivariate Polynomial Factorization , 1975, JACM.

[12]  Christoph M. Hoffmann,et al.  GEOMETRIC CONSTRAINT SOLVING IN ℜ2 AND ℜ3 , 1995 .

[13]  Giovanni Gallo,et al.  Efficient algorithms and bounds for Wu-Ritt characteristic sets , 1991 .

[14]  J. C. Owen,et al.  Algebraic solution for geometry from dimensional constraints , 1991, SMA '91.

[15]  S. Chou,et al.  Mechanical Formula Derivation in Elementary Geometries , 1989 .

[16]  Xiao-Shan Gao,et al.  Solving geometric constraint systems. I. A global propagation approach , 1998, Comput. Aided Des..

[17]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[18]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[19]  David C. Gossard,et al.  Variational geometry in computer-aided design , 1981, SIGGRAPH '81.

[20]  Allan Heydon,et al.  The Juno-2 Constraint-Based Drawing Editor , 1994 .

[21]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[22]  G. E. Collins Infallible Calculation of Polynomial Zeros to Specified Precision , 1977 .

[23]  Christoph M. Hoffmann,et al.  Constraint-based parametric conics for CAD , 1996, Comput. Aided Des..

[24]  Samuel D. Conte,et al.  Elementary Numerical Analysis , 1980 .