Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia.

Fast and reliable quantification of cone photoreceptors is a bottleneck in the clinical utilization of adaptive optics scanning light ophthalmoscope (AOSLO) systems for the study, diagnosis, and prognosis of retinal diseases. To-date, manual grading has been the sole reliable source of AOSLO quantification, as no automatic method has been reliably utilized for cone detection in real-world low-quality images of diseased retina. We present a novel deep learning based approach that combines information from both the confocal and non-confocal split detector AOSLO modalities to detect cones in subjects with achromatopsia. Our dual-mode deep learning based approach outperforms the state-of-the-art automated techniques and is on a par with human grading.

[1]  Julia S. Kroisamer,et al.  Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT , 2010, Biomedical optics express.

[2]  S. Beck,et al.  Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia , 2015, Nature Genetics.

[3]  A Pallikaris Adaptive optics ophthalmoscopy: results and applications. , 2005, Journal of refractive surgery.

[4]  A. Swaroop,et al.  High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. , 2007, Investigative ophthalmology & visual science.

[5]  Omer P. Kocaoglu,et al.  Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics , 2011, Biomedical optics express.

[6]  A. Dubra,et al.  In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. , 2013, Biomedical optics express.

[7]  Ravi S. Jonnal,et al.  Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics , 2011, Biomedical optics express.

[8]  A. Tsujikawa,et al.  High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy. , 2010, Ophthalmology.

[9]  Christopher S. Langlo,et al.  Automatic detection of modal spacing (Yellott's ring) in adaptive optics scanning light ophthalmoscope images , 2013, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[10]  Jianfei Liu,et al.  Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting , 2017, Investigative ophthalmology & visual science.

[11]  Robert F. Cooper,et al.  Photoreceptor-Based Biomarkers in AOSLO Retinal Imaging , 2017, Investigative ophthalmology & visual science.

[12]  C. Dainty,et al.  Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. , 2006, Optics express.

[13]  Christopher S. Langlo,et al.  In vivo imaging of human cone photoreceptor inner segments. , 2014, Investigative ophthalmology & visual science.

[14]  Fred K Chen,et al.  Semi-automated identification of cones in the human retina using circle Hough transform. , 2015, Biomedical optics express.

[15]  Jennifer J. Hunter,et al.  Imaging individual neurons in the retinal ganglion cell layer of the living eye , 2017, Proceedings of the National Academy of Sciences.

[16]  Krzysztof Krawiec,et al.  Segmenting Retinal Blood Vessels With Deep Neural Networks , 2016, IEEE Transactions on Medical Imaging.

[17]  A. Dubra,et al.  Subclinical photoreceptor disruption in response to severe head trauma. , 2012, Archives of ophthalmology.

[18]  John S Werner,et al.  In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. , 2006, Investigative ophthalmology & visual science.

[19]  A. Roorda,et al.  Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[20]  Austin Roorda,et al.  Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) , 2013 .

[21]  Robert J Zawadzki,et al.  Fourier-Domain Optical Coherence Tomography and Adaptive Optics Reveal Nerve Fiber Layer Loss and Photoreceptor Changes in a Patient With Optic Nerve Drusen , 2008, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[22]  Takashi Fujikado,et al.  Detection of photoreceptor disruption by adaptive optics fundus imaging and Fourier-domain optical coherence tomography in eyes with occult macular dystrophy , 2011, Clinical ophthalmology.

[23]  Christopher S. Langlo,et al.  Repeatability of In Vivo Parafoveal Cone Density and Spacing Measurements , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[24]  Stephen A. Burns,et al.  Cone Photoreceptor Irregularity on Adaptive Optics Scanning Laser Ophthalmoscopy Correlates With Severity of Diabetic Retinopathy and Macular Edema , 2016, Investigative ophthalmology & visual science.

[25]  Joseph A. Izatt,et al.  Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming , 2012, Biomedical optics express.

[26]  A. Dubra,et al.  Photoreceptor structure and function in patients with congenital achromatopsia. , 2011, Investigative ophthalmology & visual science.

[27]  M. Lombardo,et al.  Technical Factors Influencing Cone Packing Density Estimates in Adaptive Optics Flood Illuminated Retinal Images , 2014, PloS one.

[28]  Austin Roorda,et al.  Automated identification of cone photoreceptors in adaptive optics retinal images. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[30]  Nicholas Devaney,et al.  Performance Analysis of Cone Detection Algorithms , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3 D retinal in vivo imaging , 2005 .

[32]  Toco Y P Chui,et al.  The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope , 2012, Biomedical optics express.

[33]  Sina Farsiu,et al.  Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks , 2017, Scientific Reports.

[34]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[35]  Christopher S. Langlo,et al.  Residual Foveal Cone Structure in CNGB3-Associated Achromatopsia , 2016, Investigative ophthalmology & visual science.

[36]  Bing Wu,et al.  Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  David Williams,et al.  Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Ourselin,et al.  Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images. , 2017, Biomedical optics express.

[39]  Joseph A. Izatt,et al.  Automatic cone photoreceptor segmentation using graph theory and dynamic programming , 2013, Biomedical optics express.

[40]  David H Brainard,et al.  Multi-modal automatic montaging of adaptive optics retinal images. , 2016, Biomedical optics express.

[41]  Christopher S. Langlo,et al.  Visual Psychophysics and Physiological Optics Genotype-Dependent Variability in Residual Cone Structure in Achromatopsia : Toward Developing Metrics for Assessing Cone Health , 2014 .

[42]  T. Mihashi,et al.  In Vivo Measurements of Cone Photoreceptor Spacing in Myopic Eyes from Images Obtained by an Adaptive Optics Fundus Camera , 2007, Japanese Journal of Ophthalmology.

[43]  Philip J. Morrow,et al.  Automated Identification of Photoreceptor Cones Using Multi-scale Modelling and Normalized Cross-Correlation , 2011, ICIAP.

[44]  David Williams,et al.  Optical fiber properties of individual human cones. , 2002, Journal of vision.

[45]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[46]  Toco Y P Chui,et al.  Adaptive-optics imaging of human cone photoreceptor distribution. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  John S Werner,et al.  Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.