Bigger Cakes with Less Ingredients? A Comparison of Material Use of the World Economy

The amount of materials used worldwide in production and consumption increased by 56% from 1995 to 2008. Using an index decomposition analysis based on the logarithmic mean Divisia index, we investigate the drivers of material use, both on a global and a country scale. We exploit a panel dataset of 40 countries, accounting for 75% of worldwide material extraction and 88% of GDP, from 1995 to 2008. The results show that economic growth and structural change towards material-intensive countries explain most of the growth in global material use. Slight gains in material efficiency and falling importance of material-intensive sectors have decelerating effects. The country-level analysis reveals substantial heterogeneity. Some nations exhibit stable or falling material use, while it increases notably in most countries. Improving material efficiency is able to dampen growth of material use in important industrializing nations like China or India.

[1]  B. W. Ang,et al.  Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method , 1997 .

[2]  B. W. Ang,et al.  Factorizing changes in energy and environmental indicators through decomposition , 1998 .

[3]  Fuqiang Zhang,et al.  Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique , 1999 .

[4]  Jari Kaivo-oja,et al.  Decomposition Analysis of Finnish Material Flows: 1960–1996 , 2000 .

[5]  B. W. Ang,et al.  A survey of index decomposition analysis in energy and environmental studies , 2000 .

[6]  B. W. Ang,et al.  A new energy decomposition method: perfect in decomposition and consistent in aggregation , 2001 .

[7]  Rutger Hoekstra,et al.  Structural Decomposition Analysis of Physical Flows in the Economy , 2002 .

[8]  B. W. Ang,et al.  Decomposition analysis for policymaking in energy:: which is the preferred method? , 2004 .

[9]  Gale A. Boyd,et al.  A Note on the Fisher Ideal Index Decomposition for Structural Change in Energy Intensity , 2004 .

[10]  Helga Weisz,et al.  The physical economy of the European Union: Cross-country comparison and determinants of material consumption , 2006 .

[11]  Helga Weisz,et al.  Physical and monetary input-output analysis: What makes the difference? , 2006 .

[12]  R. Heijungs,et al.  Environmental Impacts of Consumption in the European Union:High‐Resolution Input‐Output Tables with Detailed Environmental Extensions , 2006 .

[13]  Samuel Niza,et al.  The material basis of the global economy Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies , 2007 .

[14]  B. W. Ang,et al.  Energy decomposition analysis: IEA model versus other methods , 2007 .

[15]  Y. Moriguchi,et al.  What Factors Have Changed Japanese Resource Productivity? , 2008 .

[16]  Klaus Hubacek,et al.  Material implication of Chile's economic growth: Combining material flow accounting (MFA) and structural decomposition analysis (SDA) , 2008 .

[17]  Vernon Topp,et al.  Productivity in the Mining Industry: Measurement and Interpretation , 2008 .

[18]  D. Stern,et al.  China's Changing Energy Intensity Trend: A Decomposition Analysis , 2008 .

[19]  Manfred Lenzen,et al.  A Material History of Australia , 2009 .

[20]  C. Weber Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002 , 2009 .

[21]  Stefan Bringezu,et al.  The physical dimension of international trade: Part 1: Direct global flows between 1962 and 2005 , 2010 .

[22]  Heinz Schandl,et al.  Resource use and resource efficiency in the Asia-Pacific region , 2010 .

[23]  F. Krausmann,et al.  Global patterns of materials use: A socioeconomic and geophysical analysis , 2010 .

[24]  B. W. Ang,et al.  Input–output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation , 2010 .

[25]  K. Wiebe Consumption-based CO2 Emissions and Carbon Leakage: Results from the Global Resource Accounting Model GRAM , 2010 .

[26]  B. W. Ang,et al.  Accounting frameworks for tracking energy efficiency trends , 2010 .

[27]  Jan Kovanda,et al.  Structural Decomposition Analysis of Raw Material Consumption , 2011 .

[28]  S. Lutter,et al.  Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis , 2011 .

[29]  Raimund Bleischwitz,et al.  Drivers for the use of materials across countries , 2011 .

[30]  H. Weisz,et al.  Methodology and Indicators of Economy‐wide Material Flow Accounting , 2011 .

[31]  B. W. Ang,et al.  Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis , 2012 .

[32]  S. Giljum,et al.  Materials embodied in international trade – Global material extraction and consumption between 1995 and 2005 , 2012 .

[33]  Y. Moriguchi,et al.  Resource Use in Growing China , 2012 .

[34]  Fredrik Lingvall,et al.  Resource efficiency in Europe : policies and approaches in 31 EEA member and cooperating countries , 2012 .

[35]  Stefan Giljum,et al.  Carbon and Materials Embodied in the International Trade of Emerging Economies , 2012 .

[36]  Heinz Schandl,et al.  Material Flows and Material Productivity in China, Australia, and Japan , 2012 .

[37]  S. Suh,et al.  The material footprint of nations , 2013, Proceedings of the National Academy of Sciences.

[38]  Organización Mundial del Comercio World Trade Report 2013 , 2013 .

[39]  Manfred Lenzen,et al.  BUILDING EORA: A GLOBAL MULTI-REGION INPUT–OUTPUT DATABASE AT HIGH COUNTRY AND SECTOR RESOLUTION , 2013 .

[40]  Elena Verdolini,et al.  Energy Intensity Developments in 40 Major Economies: Structural Change or Technology Improvement? , 2013 .

[41]  Bart Los,et al.  THE CONSTRUCTION OF WORLD INPUT–OUTPUT TABLES IN THE WIOD PROJECT , 2013 .

[42]  S. Giljum,et al.  Global Material Flow database Material extraction data , 2014 .

[43]  Manfred Lenzen,et al.  EFFECTS OF SECTOR AGGREGATION ON CO2 MULTIPLIERS IN MULTIREGIONAL INPUT–OUTPUT ANALYSES , 2014 .