Modeling data relationships with a local variance reducing technique: Applications in hydrology

[1] The assessment of an appropriate function describing the relationship between hydrological variables is a frequent problem. The usual way of estimating an overall function is a difficult task if the relationship between the variables is highly nonlinear. Nearest neighbor methods provide an alternative. In this paper different generalizations of the nearest neighbor method are suggested. Besides using different estimators the problem of finding an appropriate distance measure is discussed. Linear embedding of the observation space into an appropriate Euclidean space can improve the distance-based methods substantially. The suggested transformations and the corresponding local linear estimators are applied to two different examples: the prediction of local discharge characteristics from catchment properties and a simple 1 day flood forecasting problem.

[1]  M. Casdagli Chaos and Deterministic Versus Stochastic Non‐Linear Modelling , 1992 .

[2]  C. Mallows More comments on C p , 1995 .

[3]  G. Marsily,et al.  Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity , 1987 .

[4]  Lucien Duckstein,et al.  Application of fuzzy logic-based modeling to improve the performance of the Revised Universal Soil Loss Equation , 2002 .

[5]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[6]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[7]  W. Koppen,et al.  Handbuch der Klimatologie@@@Handbuch der Klimatologie Band IV, Teil T. Klimakunde der Sudsee-Inseln@@@Handbuch der Klimatologie Band IV, Teil U. Klimakunde der Antarktis , 1939 .

[8]  Cuthbert Daniel,et al.  Fitting Equations to Data: Computer Analysis of Multifactor Data , 1980 .

[9]  Emmanouil N. Anagnostou,et al.  High‐frequency estimation of rainfall from thunderstorms via satellite infrared and a long‐range lightning network in Europe , 2004 .

[10]  C. L. Mallows Some comments on C_p , 1973 .

[11]  Magnus Persson,et al.  Is correlation dimension a reliable indicator of low‐dimensional chaos in short hydrological time series? , 2002 .

[12]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[13]  H. Akaike A new look at the statistical model identification , 1974 .

[14]  K.-Peter Holz,et al.  Short-term water level prediction using neural networks and neuro-fuzzy approach , 2003, Neurocomputing.

[15]  Yakov A. Pachepsky,et al.  Soil structure and pedotransfer functions , 2003 .

[16]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  C. H. Oh,et al.  Some comments on , 1998 .

[19]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[20]  P. Xu,et al.  Neighbourhood selection for local modelling and prediction of hydrological time series , 2002 .

[22]  Luca Ridolfi,et al.  Multivariate nonlinear prediction of river flows , 2001 .

[23]  Mordecai Ezekiel,et al.  Methods of Correlation Analysis. , 1931 .

[24]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[25]  Pranab Kumar Sen,et al.  Multivariate Analysis (2nd ed.). , 1983 .