On the Number of Hamilton Cycles in Pseudo-Random Graphs

We prove that if $G$ is an $(n,d,\lambda)$-graph (a $d$-regular graph on $n$ vertices, all of whose non-trivial eigenvalues are at most $\lambda)$ and the following conditions are satisfied: $\frac{d}{\lambda}\ge (\log n)^{1+\epsilon}$ for some constant $\epsilon>0$; $\log d\cdot \log\frac{d}{\lambda}\gg \log n$, then the number of Hamilton cycles in $G$ is $n!\left(\frac{d}{n}\right)^n(1+o(1))^n$.

[1]  Svante Janson,et al.  The Numbers of Spanning Trees, Hamilton Cycles and Perfect Matchings in a Random Graph , 1994, Combinatorics, Probability and Computing.

[2]  Michael Krivelevich,et al.  Hamilton cycles in highly connected and expanding graphs , 2006, Comb..

[3]  Bill Cuckler,et al.  Entropy bounds for perfect matchings and Hamiltonian cycles , 2009, Comb..

[4]  Alan Frieze,et al.  On the Number of Perfect Matchings and Hamilton Cycles in $\epsilon$-Regular Non-bipartite Graphs , 2000 .

[5]  Bill Cuckler,et al.  Hamiltonian cycles in Dirac graphs , 2009, Comb..

[6]  Noga Alon,et al.  The Maximum Number of Perfect Matchings in Graphs with a Given Degree Sequence , 2008, Electron. J. Comb..

[7]  Svante Janson,et al.  Random Regular Graphs: Asymptotic Distributions and Contiguity , 1995, Combinatorics, Probability and Computing.

[8]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[9]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[10]  Béla Bollobás,et al.  Random Graphs , 1985 .

[11]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[12]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[13]  Endre Szemerédi,et al.  On the number of Hamiltonian cycles in Dirac graphs , 2003, Discret. Math..

[14]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[15]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[16]  Béla Bollobás,et al.  Almost all Regular Graphs are Hamiltonian , 1983, European journal of combinatorics (Print).

[17]  Alan M. Frieze,et al.  On the number of hamilton cycles in a random graph , 1989, J. Graph Theory.

[18]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[19]  Alan M. Frieze,et al.  On packing Hamilton cycles in ?-regular graphs , 2005, J. Comb. Theory, Ser. B.

[20]  A. Thomason Pseudo-Random Graphs , 1987 .

[21]  Benny Sudakov,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003, J. Graph Theory.

[22]  Daniela Kühn,et al.  Approximate Hamilton decompositions of random graphs , 2012, Random Struct. Algorithms.