A class of retarded Volterra-Fredholm type integral inequalities on time scales and their applications

In this paper, we study some new retarded Volterra-Fredholm type integral inequalities on time scales, which provide explicit bounds on unknown functions. These inequalities generalize and extend some known inequalities and can be used as tools in the qualitative theory of certain classes of retarded dynamic equations on time scales. Some applications are also presented to illustrate the usefulness of our results.

[1]  Martin Bohner,et al.  Pachpatte Inequalities on Time Scales , 2005 .

[2]  Fanwei Meng,et al.  Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales , 2014, Appl. Math. Comput..

[3]  Ferhan Merdivenci Atici,et al.  An application of time scales to economics , 2006, Math. Comput. Model..

[4]  A. Peterson,et al.  Belohorec‐type oscillation theorem for second order sublinear dynamic equations on time scales , 2011 .

[5]  B. Karpuz Volterra Theory on Time Scales , 2014 .

[6]  Cheh-Chih Yeh,et al.  Gronwall inequalities on time scales , 2006 .

[7]  Wei Nian Li,et al.  Some delay integral inequalities on time scales , 2010, Comput. Math. Appl..

[8]  Bin Zheng,et al.  Generalized Gronwall-Bellman-type delay dynamic inequalities on time scales and their applications , 2012, Appl. Math. Comput..

[9]  Qing-Hua Ma,et al.  The bounds on the solutions of certain two-dimensional delay dynamic systems on time scales , 2011, Comput. Math. Appl..

[10]  E. Savaş Quasi-power increasing sequence for generalized absolute summability , 2008 .

[11]  Yuangong Sun,et al.  Some nonlinear dynamic integral inequalities on time scales , 2013, Appl. Math. Comput..

[12]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[13]  Fanwei Meng,et al.  Some new Volterra-Fredholm type dynamic integral inequalities on time scales , 2013, Appl. Math. Comput..

[14]  Cheh-Chih Yeh,et al.  Anderson's inequality on time scales , 2006, Appl. Math. Lett..

[15]  A. Dogan Higher-order singular multi-point boundary-value problems on time scales , 2011, Proceedings of the Edinburgh Mathematical Society.

[16]  F. Meng,et al.  Gronwall–Bellman type nonlinear delay integral inequalities on time scales , 2011 .

[17]  S. Saker SOME NONLINEAR DYNAMIC INEQUALITIES ON TIME SCALES AND APPLICATIONS , 2010 .

[18]  Douglas R. Anderson,et al.  Nonlinear Dynamic Integral Inequalities in two Independent Variables on Time Scale Pairs 1 , 2008 .

[19]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[20]  Bounds on certain integral inequalities. , 2002 .

[21]  A. Peterson,et al.  On the asymptotic behavior of solutions of Emden–Fowler equations on time scales , 2010, Annali di Matematica Pura ed Applicata.

[22]  Youssef N. Raffoul,et al.  Existence results for periodic solutions of integro-dynamic equations on time scales , 2009 .

[23]  Yuangong Sun Some Sublinear Dynamic Integral Inequalities on Time Scales , 2010 .

[24]  Samir H. Saker,et al.  Some nonlinear dynamic inequalities on time scales , 2011 .

[25]  A. Slavík Averaging dynamic equations on time scales , 2012 .

[26]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[27]  A. Peterson,et al.  Inequalities on Time Scales: A Survey , 2001 .

[28]  S. Saker Nonlinear dynamic inequalities of Gronwall-Bellman type on time scales , 2011 .

[29]  Deepak B. Pachpatte,et al.  Explicit estimates on integral inequalities with time scale. , 2006 .

[30]  Feng Qi,et al.  Several integral inequalities on time scales , 2012 .

[31]  M. Bohner,et al.  Periodic solutions of functional dynamic equations with infinite delay , 2008 .

[32]  Josip Pecaric,et al.  On the boundedness of a class of nonlinear dynamic equations of second order , 2013, Appl. Math. Lett..

[33]  Márcia Federson,et al.  Measure functional differential equations and functional dynamic equations on time scales , 2012 .