DOOR 2.0: presenting operons and their functions through dynamic and integrated views

We have recently developed a new version of the DOOR operon database, DOOR 2.0, which is available online at http://csbl.bmb.uga.edu/DOOR/ and will be updated on a regular basis. DOOR 2.0 contains genome-scale operons for 2072 prokaryotes with complete genomes, three times the number of genomes covered in the previous version published in 2009. DOOR 2.0 has a number of new features, compared with its previous version, including (i) more than 250 000 transcription units, experimentally validated or computationally predicted based on RNA-seq data, providing a dynamic functional view of the underlying operons; (ii) an integrated operon-centric data resource that provides not only operons for each covered genome but also their functional and regulatory information such as their cis-regulatory binding sites for transcription initiation and termination, gene expression levels estimated based on RNA-seq data and conservation information across multiple genomes; (iii) a high-performance web service for online operon prediction on user-provided genomic sequences; (iv) an intuitive genome browser to support visualization of user-selected data; and (v) a keyword-based Google-like search engine for finding the needed information intuitively and rapidly in this database.

[1]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[2]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[3]  L. Stein,et al.  JBrowse: a next-generation genome browser. , 2009, Genome research.

[4]  Temple F. Smith,et al.  Operons in Escherichia coli: genomic analyses and predictions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Monod,et al.  [Operon: a group of genes with the expression coordinated by an operator]. , 1960, Comptes rendus hebdomadaires des seances de l'Academie des sciences.

[6]  Susumu Goto,et al.  ODB: a database of operons accumulating known operons across multiple genomes , 2005, Nucleic Acids Res..

[7]  Guy Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..

[8]  Galt P. Barber,et al.  BigWig and BigBed: enabling browsing of large distributed datasets , 2010, Bioinform..

[9]  Julio Collado-Vides,et al.  RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more , 2012, Nucleic Acids Res..

[10]  Ying Xu,et al.  DOOR: a database for prokaryotic operons , 2008, Nucleic Acids Res..

[11]  Karsten Zengler,et al.  The transcription unit architecture of the Escherichia coli genome , 2009, Nature Biotechnology.

[12]  Ying Xu,et al.  Integration of sequence-similarity and functional association information can overcome intrinsic problems in orthology mapping across bacterial genomes , 2011, Nucleic acids research.

[13]  David Page,et al.  A Probabilistic Learning Approach to Whole-Genome Operon Prediction , 2000, ISMB.

[14]  Ying Xu,et al.  An integrated toolkit for accurate prediction and analysis of cis-regulatory motifs at a genome scale , 2013, Bioinform..

[15]  Kenta Nakai,et al.  DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information , 2007, Nucleic Acids Res..

[16]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[17]  A. Arkin,et al.  The Life-Cycle of Operons , 2006, PLoS genetics.

[18]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[19]  Inna Dubchak,et al.  RegTransBase—a database of regulatory sequences and interactions in a wide range of prokaryotic genomes , 2006, Nucleic Acids Res..

[20]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[21]  G. Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..

[22]  Enrique Merino,et al.  ProOpDB: Prokaryotic Operon DataBase , 2011, Nucleic Acids Res..

[23]  S. Adhya,et al.  Suboperonic Regulatory Signals , 2003, Science's STKE.

[24]  Steven Salzberg,et al.  OperonDB: a comprehensive database of predicted operons in microbial genomes , 2008, Nucleic Acids Res..

[25]  F. Jacob,et al.  L'opéron : groupe de gènes à expression coordonnée par un opérateur [C. R. Acad. Sci. Paris 250 (1960) 1727–1729] , 2005 .

[26]  Ying Xu,et al.  A new framework for identifying cis-regulatory motifs in prokaryotes , 2010, Nucleic acids research.

[27]  Shujiro Okuda,et al.  ODB: a database for operon organizations, 2011 update , 2010, Nucleic Acids Res..

[28]  S. Salzberg,et al.  Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake , 2007, Genome Biology.

[29]  Grace Jordison Molecular Biology of the Gene , 1965, The Yale Journal of Biology and Medicine.

[30]  Ying Xu,et al.  Operon prediction using both genome-specific and general genomic information , 2006, Nucleic acids research.