ALMA REVEALS THE MOLECULAR MEDIUM FUELING THE NEAREST NUCLEAR STARBURST

We use ALMA to derive the mass, length, and time scales associated with the nuclear starburst in NGC 253. This region forms ~2 M_sun/yr of stars and resembles other starbursts in scaling relations, with star formation consuming the gas reservoir 10 times faster than in galaxy disks. We present observations of CO, the high effective density transitions HCN(1-0), HCO+(1-0), CS(2-1), and their isotopologues. We identify ten clouds that appear as peaks in line emission and enhancements in the HCN-to-CO ratio. These clouds are massive (~10^7 M_sun) structures with sizes (~30 pc) similar to GMCs in other systems. Compared to disk galaxy GMCs, they show high line widths (~20-40 km/s) given their size, with implied Mach numbers ~90. The clouds also show high surface (~6,000 M_sun/pc^2) and volume densities (n_H2~2,000 cm^-3). Given these, self-gravity can explain the line widths. This short free fall time (~0.7 Myr) helps explain the more efficient star formation in NGC 253. We also consider the starburst region as a whole. The geometry is confused by the high inclination, but simple models support a non-axisymmetric, bar-like geometry with a compact, clumpy region of high gas density embedded in an extended CO distribution. Even for the whole region, the surface density still exceeds that of a disk galaxy GMC. The orbital time (~10 Myr), disk free fall time (<~ 3 Myr), and disk crossing time (<~ 3 Myr) are each much shorter than in a normal spiral galaxy disk. Some but not all aspects of the structure correspond to predictions from assuming vertical dynamical equilibrium or a marginally stable rotating disk. Finally, the CO-to-H2 conversion factor implied by our cloud calculations is approximately Galactic, contrasting with results showing a low value for the whole starburst region. The contrast provides resolved support for the idea of mixed molecular ISM phases in starburst galaxies.

[1]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[2]  P. Myers,et al.  CO Observations of Southern High-Latitude Clouds , 1986 .

[3]  J. Condon A 1.49 GHz atlas of spiral galaxies with B(T) = +12 or less and delta = -45 deg or greater , 1987 .

[4]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[5]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[6]  N. Scoville,et al.  Twin peaks of CO emission in the central regions of barred galaxies , 1992 .

[7]  T. Wilson,et al.  Abundances in the interstellar medium , 1992 .

[8]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[9]  Timothy A. D. Paglione,et al.  The Distribution of the Dense Clouds in the Starburst Nucleus of NGC 253 , 1995 .

[10]  Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[11]  W. Goss,et al.  Orthogonal Rotating Gaseous Disks near the Nucleus of NGC 253 , 1996 .

[12]  J. Holtzman,et al.  The Discovery of Young, Luminous, Compact Stellar Clusters in the Starburst Galaxy NGC 253 , 1996 .

[13]  J. Whiteoak,et al.  BIMA CS J=21 Observations of NGC 253: Kinematic Evidence for Dense Gas in a Bar , 1996 .

[14]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[15]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[16]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[17]  CENTRAL ROTATION CURVES OF SPIRAL GALAXIES , 1999, astro-ph/9905056.

[18]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[19]  Star Formation Rates in Disk Galaxies and Circumnuclear Starbursts from Cloud Collisions , 1999, astro-ph/9906355.

[20]  A mapping survey of the (CO)-C-13 and (CO)-C-12 emission in galaxies , 2001, astro-ph/0103072.

[21]  The Central Velocity Field in NGC 253: Possible Indication of a Bar , 2000, astro-ph/0010252.

[22]  A. Miyazaki,et al.  Statistical Properties of Molecular Clouds in the Galactic Center , 2001 .

[23]  J. Carpenter,et al.  The Equilibrium State of Molecular Regions in the Outer Galaxy , 2001, astro-ph/0101133.

[24]  Formation and Fragmentation of Gaseous Spurs in Spiral Galaxies , 2001, astro-ph/0111398.

[25]  T. Heckman,et al.  Chandra Observations of the Evolving Core of the Starburst Galaxy NGC 253 , 2002, astro-ph/0207431.

[26]  P. Martini,et al.  Circumnuclear Dust in Nearby Active and Inactive Galaxies. I. Data , 2002, astro-ph/0212396.

[27]  Woong-Tae Kim,et al.  Magnetorotationally Driven Galactic Turbulence and the Formation of Giant Molecular Clouds , 2003, astro-ph/0309080.

[28]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[29]  Molecular Gas in NUclei of GAlaxies (NUGA). I. The counter-rotating LINER NGC 4826 , 2003, astro-ph/0306140.

[30]  E. Ladd On the Relative Abundance of C18O and C17O in the Taurus Molecular Cloud , 2004 .

[31]  Yu Gao,et al.  The Star Formation Rate and Dense Molecular Gas in Galaxies , 2003, astro-ph/0310339.

[32]  J. Jackson,et al.  The Structure, Kinematics, and Physical Properties of the Molecular Gas in the Starburst Nucleus of NGC 253 , 2004, astro-ph/0405031.

[33]  HCN and HCO$^{+}$ emission in the disk of M 31 , 2004, astro-ph/0409181.

[34]  The Temperature Distribution of Dense Molecular Gas in the Center of NGC 253 , 2005, astro-ph/0505143.

[35]  K. Sheth,et al.  Secular Evolution via Bar-driven Gas Inflow: Results from BIMA SONG , 2005, astro-ph/0505393.

[36]  N. Scoville,et al.  The Central Region of Barred Galaxies: Molecular Environment, Starbursts, and Secular Evolution , 2004, astro-ph/0402341.

[37]  Michael G. Richer,et al.  Distance to NGC 253 based on the planetary nebula luminosity function , 2005 .

[38]  Giant Molecular Clouds in M64 , 2005, astro-ph/0501387.

[39]  Todd A. Thompson,et al.  Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005 .

[40]  D. Iono,et al.  Molecular Superbubbles in the Starburst Galaxy NGC 253 , 2005, astro-ph/0509430.

[41]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[42]  A 2 mm spectral line survey of the starburst galaxy NGC 253 , 2006, astro-ph/0602360.

[43]  Erik Rosolowsky,et al.  Bias‐free Measurement of Giant Molecular Cloud Properties , 2006, astro-ph/0601706.

[44]  The connection between bar strength and circumnuclear dust structure , 2006, astro-ph/0606460.

[45]  S. Martín,et al.  A 2 Millimeter Spectral Line Survey of the Starburst Galaxy NGC 253 , 2006 .

[46]  Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks , 2006, astro-ph/0603751.

[47]  A. Cimatti,et al.  Dynamical Properties of z ~ 2 Star-forming Galaxies and a Universal Star Formation Relation , 2007, 0706.2656.

[48]  A. Bolatto,et al.  New Insights on the Dense Molecular Gas in NGC 253 as Traced by HCN and HCO+ , 2007, 0707.1850.

[49]  M. Krumholz,et al.  Slow Star Formation in Dense Gas: Evidence and Implications , 2006, astro-ph/0606277.

[50]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[51]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[52]  Coleman Krawczyk,et al.  RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS , 2008, 0809.1397.

[53]  G. Siringo,et al.  LABOCA observations of nearby, active galaxies , 2008, 0808.3358.

[54]  N. McCrady,et al.  A YOUNG SUPER STAR CLUSTER IN THE NUCLEAR REGION OF NGC 253 , 2009, 0902.4027.

[55]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[56]  D. Calzetti,et al.  THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY , 2009, 0907.4722.

[57]  J. A. Fern'andez-Ontiveros,et al.  The nucleus of NGC 253 and its massive stellar clusters at parsec scales , 2008, 0810.3250.

[58]  H. Rix,et al.  WHAT IS DRIVING THE H i VELOCITY DISPERSION? , 2009, 0903.0183.

[59]  A. Bolatto,et al.  THE STRUCTURE OF A LOW-METALLICITY GIANT MOLECULAR CLOUD COMPLEX , 2009, 0907.2240.

[60]  L. Blitz,et al.  THE GAS CONSUMPTION HISTORY TO REDSHIFT 4 , 2009, 0909.3840.

[61]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[62]  J. Ballesteros-Paredes,et al.  Gravity or turbulence? Velocity dispersion–size relation , 2010, 1009.1583.

[63]  U. L. Laguna,et al.  THE STELLAR KINEMATIC CENTER AND THE TRUE GALACTIC NUCLEUS OF NGC 253 , 2010, 1005.1645.

[64]  W. Reach,et al.  Physical properties of giant molecular clouds in the Large Magellanic Cloud , 2010, 1004.2094.

[65]  D.Lutz,et al.  A study of the gas–star formation relation over cosmic time , 2010 .

[66]  M. Lombardi,et al.  ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS , 2010, 1009.2985.

[67]  N. Evans,et al.  THE PROPERTIES OF MASSIVE, DENSE CLUMPS: MAPPING SURVEYS OF HCN AND CS , 2010, 1004.0398.

[68]  Satoki Matsushita,et al.  STAR-FORMING CLOUD COMPLEXES IN THE CENTRAL MOLECULAR ZONE OF NGC 253 , 2011, 1104.2388.

[69]  Heidelberg,et al.  THE MAGELLANIC MOPRA ASSESSMENT (MAGMA). I. THE MOLECULAR CLOUD POPULATION OF THE LARGE MAGELLANIC CLOUD , 2011, 1108.5715.

[70]  C. Kramer,et al.  A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES , 2011, 1105.4605.

[71]  T. Sawada,et al.  RESOLVED MEASUREMENTS OF XCO IN NGC 6946 , 2011, 1109.6272.

[72]  E. Ostriker,et al.  A general model for the CO–H2 conversion factor in galaxies with applications to the star formation law , 2011, 1110.3791.

[73]  M. Dickinson,et al.  z~4 Halpha Emitters in GOODS : Tracing the Dominant Mode for Growth of Galaxies , 2011, 1103.4124.

[74]  E. Rosolowsky,et al.  Minimal HCN emission from molecular clouds in M33 , 2011, 1104.3935.

[75]  Does external pressure explain recent results for molecular clouds , 2011, 1106.3017.

[76]  E. Ostriker,et al.  MAXIMALLY STAR-FORMING GALACTIC DISKS. I. STARBURST REGULATION VIA FEEDBACK-DRIVEN TURBULENCE , 2011, 1102.1446.

[77]  N. Erickson,et al.  EVIDENCE FOR 1000 km s−1 MOLECULAR OUTFLOWS IN THE LOCAL ULIRG POPULATION , 2011, 1103.5508.

[78]  G. Zamorani,et al.  THE SINS/zC-SINF SURVEY of z ∼ 2 GALAXY KINEMATICS: OUTFLOW PROPERTIES , 2012, 1207.5897.

[79]  S. García-Burillo,et al.  Star-formation laws in luminous infrared galaxies. New observational constraints on models , 2011, 1111.6773.

[80]  E. Ostriker,et al.  MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION , 2012, 1205.3174.

[81]  R. Klessen,et al.  THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS , 2012, 1209.2856.

[82]  A. Dekel,et al.  METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES , 2011, 1106.0301.

[83]  Cambridge,et al.  PHYSICAL CONDITIONS IN MOLECULAR CLOUDS IN THE ARM AND INTERARM REGIONS OF M51 , 2012, 1210.6349.

[84]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[85]  D. Schiminovich,et al.  THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES , 2012, 1209.0476.

[86]  A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS , 2011, 1109.4150.

[87]  Pieter van Dokkum,et al.  THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS , 2012, 1205.6473.

[88]  M. Lombardi,et al.  STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS , 2011, 1112.4466.

[89]  Gaseous Structures in Barred Galaxies: Effects of the Bar Strength , 2012, 1208.1821.

[90]  P. P. van der Werf,et al.  THE MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES. II. EXTREME PHYSICAL CONDITIONS AND THEIR EFFECTS ON THE Xco FACTOR , 2012, 1202.1803.

[91]  A. Leroy,et al.  A HIGH-DISPERSION MOLECULAR GAS COMPONENT IN NEARBY GALAXIES , 2013, 1309.6324.

[92]  H. Rix,et al.  MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES , 2013, 1301.2328.

[93]  E. Pellegrini,et al.  THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES , 2012, 1212.1208.

[94]  T. Sawada,et al.  RESOLVED GIANT MOLECULAR CLOUDS IN NEARBY SPIRAL GALAXIES: INSIGHTS FROM THE CANON CO (1–0) SURVEY , 2013, 1305.5275.

[95]  C. Kramer,et al.  Dense gas in M 33 (HerM33es) , 2012, 1210.3263.

[96]  T. Thompson,et al.  Numerical simulations of radiatively driven dusty winds , 2013, 1302.4440.

[97]  S. Veilleux,et al.  DUSTY WINDS: EXTRAPLANAR POLYCYCLIC AROMATIC HYDROCARBON FEATURES OF NEARBY GALAXIES , 2013 .

[98]  K. Alatalo,et al.  The ATLAS3D project - XIV. The extent and kinematics of the molecular gas in early-type galaxies , 2012, 1211.1011.

[99]  K. Menten,et al.  AMMONIA THERMOMETRY OF STAR-FORMING GALAXIES , 2013, 1310.6586.

[100]  A. Leroy,et al.  THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82 , 2013, 1312.1595.

[101]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[102]  S. Warren,et al.  Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind , 2013, Nature.

[103]  P. Hopkins Variations in the stellar CMF and IMF: from bottom to top , 2012, 1204.2835.

[104]  C. Kramer,et al.  THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS): ENVIRONMENTAL DEPENDENCE OF GIANT MOLECULAR CLOUD PROPERTIES IN M51 , 2014, 1401.1505.

[105]  M. Irwin,et al.  The near-infrared structure of the barred galaxy NGC 253 from VISTA , 2014, 1405.7301.