Modeling and Adaptive Tracking Control of a Quadrotor UAV

The dynamics of UAV's have special features that can complicate the process of designing a trajectory tracking controller. In this paper, after modelling the quadrotor as a VTOL UAV, a nonlinear adaptive controller is designed to solve trajectory tracking problem in the presence of parametric and nonparametric uncertainties. This controller doesn't need knowing any physical parameters of the quadrotor, and there isn't need to retune the controller for various payloads. In this approach, the control of a quadrotor is performed by using decentralized adaptive controllers in the inner attitude control and outer translational movement control loops. The outer loop generates the instantaneous desired angles for inner loop. The inner loop stabilizes the orientation of the vehicle. Inverse kinematic of robot is used to convert outputs of the outer loop to inputs of the inner loop. The controller needs some unknown physical parameter to generate control signals. A robust parameter identifier estimates the required parameters for the outer control loops. Simulations are carried out to illustrate the robustness and tracking performance of the controllers.

[1]  H. Jin Kim,et al.  Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter , 2009 .

[2]  Farbod Fahimi,et al.  The control point concept for nonlinear trajectory-tracking control of autonomous helicopters with fly-bar , 2011, Int. J. Control.

[3]  Andrew Roberts,et al.  Adaptive position tracking of VTOL UAVs , 2011, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[4]  Guilherme V. Raffo,et al.  An integral predictive/nonlinear Hinfinity control structure for a quadrotor helicopter , 2010, Autom..

[5]  Yu Feng,et al.  Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping , 2010, Proceedings of the 2010 American Control Conference.

[6]  Roland Siegwart,et al.  Vision Based Position Control for MAVs Using One Single Circular Landmark , 2011, J. Intell. Robotic Syst..

[7]  G. Raffo,et al.  An integral predictive / nonlinear H ∞ control structure for a quadrotor helicopter , 2009 .

[8]  Quan Quan,et al.  Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances , 2011 .

[9]  Frank L. Lewis,et al.  Backstepping Approach for Controlling a Quadrotor Using Lagrange Form Dynamics , 2009, J. Intell. Robotic Syst..

[10]  Rogelio Lozano,et al.  Stabilization and Trajectory Tracking of a Quad-Rotor Using Vision , 2011, J. Intell. Robotic Syst..

[11]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[12]  Samir Bouabdallah,et al.  Design and control of quadrotors with application to autonomous flying , 2007 .

[13]  Hicham MEDROMI A High Gain Observer and Sliding Mode Controller for an Autonomous Quadrotor Helicopter , 2001 .

[14]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[15]  Hichem Maaref,et al.  Controlling a drone: Comparison between a based model method and a fuzzy inference system , 2009, Appl. Soft Comput..

[16]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[17]  Tarek Hamel,et al.  Dynamic Image-Based Visual Servo Control Using Centroid and Optic Flow Features , 2008 .

[18]  Leonid Fridman,et al.  High‐order sliding‐mode observer for a quadrotor UAV , 2008 .

[19]  Jonathan P. How,et al.  L 1 Adaptive Control for Indoor Autonomous Vehicles: Design Process and Flight Testing , 2009 .

[20]  Stjepan Bogdan,et al.  Hybrid fly-by-wire quadrotor controller , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[21]  Sarangapani Jagannathan,et al.  Output Feedback Control of a Quadrotor UAV Using Neural Networks , 2010, IEEE Transactions on Neural Networks.

[22]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[23]  Mehmet Önder Efe,et al.  Neural Network Assisted Computationally Simple PI$^\lambda$D$^\mu$ Control of a Quadrotor UAV , 2011, IEEE Transactions on Industrial Informatics.

[24]  Robert E. Mahony,et al.  A Practical Visual Servo Control for an Unmanned Aerial Vehicle , 2008, IEEE Transactions on Robotics.

[25]  Erdinç Altug,et al.  EKF Based Attitude Estimation and Stabilization of a Quadrotor UAV Using Vanishing Points in Catadioptric Images , 2011, J. Intell. Robotic Syst..

[26]  Chris J. B. Macnab,et al.  Robust adaptive control of a quadrotor helicopter , 2011 .

[27]  Homayoun Seraji,et al.  Decentralized adaptive control of manipulators: theory, simulation, and experimentation , 1989, IEEE Trans. Robotics Autom..

[28]  Frank L. Lewis,et al.  Dynamic inversion with zero-dynamics stabilisation for quadrotor control , 2009 .

[29]  T. Madani,et al.  Adaptive Control via Backstepping Technique and Neural Networks of a Quadrotor Helicopter , 2008 .

[30]  Robert E. Mahony,et al.  Image-Based Visual Servo Control of the Translation Kinematics of a Quadrotor Aerial Vehicle , 2009, IEEE Transactions on Robotics.