Bounded distance decoding of linear error-correcting codes with Gröbner bases
暂无分享,去创建一个
[1] J. Fitzgerald,et al. Decoding Affine Variety Codes Using Gröbner Bases , 1998, Des. Codes Cryptogr..
[2] Hans Schönemann,et al. SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.
[3] Ruud Pellikaan,et al. Decoding Linear Error-Correcting Codes up to Half the Minimum Distance with Gröbner Bases , 2009, Gröbner Bases, Coding, and Cryptography.
[4] Adi Shamir,et al. Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations , 2000, EUROCRYPT.
[5] M. Sala,et al. Correcting errors and erasures via the syndrome variety , 2005 .
[6] Bernd Sturmfels,et al. Gröbner bases and Stanley decompositions of determinantal rings , 1990 .
[7] Igor R. Shafarevich,et al. Algebra I - basic notions of algebra , 1990, Encyclopaedia of mathematical sciences.
[8] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[9] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[10] Moni Naor,et al. The hardness of decoding linear codes with preprocessing , 1990, IEEE Trans. Inf. Theory.
[11] David Eisenbud,et al. LINEAR SECTIONS OF DETERMINANTAL VARIETIES , 1988 .
[12] M. Sala,et al. A commutative algebra approach to linear codes , 2009 .
[13] Igor E. Shparlinski,et al. Finding irreducible and primitive polynomials , 1993, Applicable Algebra in Engineering, Communication and Computing.
[14] F. Lemmermeyer. Error-correcting Codes , 2005 .
[15] Edgar Martínez-Moro,et al. A General Framework for Applying FGLM Techniques to Linear Codes , 2006, AAECC.
[16] Igor E. Shparlinski. Finite Fields: Theory and Computation , 1999 .
[17] Jean-Charles Faugère,et al. Complexity of Gröbner basis computation for Semi-regular Overdetermined sequences over F_2 with solutions in F_2 , 2002 .
[18] K. K. Tzeng,et al. Decoding beyond the BCH bound using multiple sets of syndrome sequences (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[19] W. W. Peterson,et al. Error-Correcting Codes. , 1962 .
[20] Russel J. Higgs,et al. Decoding the ternary Golay code , 1993, IEEE Trans. Inf. Theory.
[21] Robert J. McEliece,et al. A public key cryptosystem based on algebraic coding theory , 1978 .
[22] Pascale Charpin,et al. Studying the locator polynomials of minimum weight codewords of BCH codes , 1992, IEEE Trans. Inf. Theory.
[23] G. Greuel,et al. A Singular Introduction to Commutative Algebra , 2002 .
[24] Tor Helleseth,et al. Use of Grobner bases to decode binary cyclic codes up to the true minimum distance , 1994, IEEE Trans. Inf. Theory.
[25] A. Cooper,et al. Toward a New Method of Decoding Algebraic Codes Using Groebner Bases , 1993 .
[26] S. Yau. Mathematics and its applications , 2002 .
[27] A. B. Cooper. Finding BCH error locator polynomials in one step , 1991 .
[28] Tor Helleseth,et al. General principles for the algebraic decoding of cyclic codes , 1994, IEEE Trans. Inf. Theory.
[29] Edgar Martínez-Moro,et al. Gröbner bases and combinatorics for binary codes , 2008, Applicable Algebra in Engineering, Communication and Computing.
[30] Carlos R. P. Hartmann. Decoding beyond the BCH bound (Corresp.) , 1972, IEEE Trans. Inf. Theory.
[31] Masao Kasahara,et al. A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..
[32] W. W. Peterson,et al. Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.
[33] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[34] M. Borges-Quintana,et al. On a Gröbner bases structure associated to linear codes , 2005 .
[35] Philippe Loustaunau,et al. On the Decoding of Cyclic Codes Using Gröbner Bases , 1997, Applicable Algebra in Engineering, Communication and Computing.
[36] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[37] T. G. Room. The Geometry of Determinantal Loci , 1938 .
[38] R. Brualdi,et al. Handbook Of Coding Theory , 2011 .
[39] N. Zierler,et al. A Class of Error-Correcting Codes in $p^m $ Symbols , 1961 .
[40] Alexander Barg,et al. Complexity Issues in Coding Theory , 1997, Electron. Colloquium Comput. Complex..
[41] Massimo Caboara,et al. The Chen-Reed-Helleseth-Truong Decoding Algorithm and the Gianni-Kalkbrenner Gröbner Shape Theorem , 2002, Applicable Algebra in Engineering, Communication and Computing.
[42] Ian F. Blake,et al. Algebraic-Geometry Codes , 1998, IEEE Trans. Inf. Theory.
[43] J. Faugère,et al. Efficient decoding of (binary) cyclic codes above the correction capacity of the code using grobner bases , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[44] Tor Helleseth,et al. Algebraic decoding of cyclic codes: A polynomial ideal point of view , 1993 .
[45] Jean-Charles Faugère,et al. On formulas for decoding binary cyclic codes , 2007, 2007 IEEE International Symposium on Information Theory.
[46] G. R. Pellikaan,et al. Decoding error-correcting codes with Grobner bases , 2007 .
[47] C. R. P. Hartmann. Decoding beyond the BCH bound , 1971 .
[48] Jeanne Fitzgerald,et al. Applications of Grobner Bases to Linear Codes. , 1996 .
[49] Pascale Charpin,et al. The minimum distance of some binary codes via the Newton's identities , 1990, EUROCODE.