Bounded distance decoding of linear error-correcting codes with Gröbner bases

The problem of bounded distance decoding of arbitrary linear codes using Grobner bases is addressed. A new method is proposed, which is based on reducing an initial decoding problem to solving a certain system of polynomial equations over a finite field. The peculiarity of this system is that, when we want to decode up to half the minimum distance, it has a unique solution even over the algebraic closure of the considered finite field, although field equations are not added. The equations in the system have degree at most 2. As our experiments suggest, our method is much faster than the one of Fitzgerald-Lax. It is also shown via experiments that the proposed approach in some range of parameters is superior to the generic syndrome decoding.

[1]  J. Fitzgerald,et al.  Decoding Affine Variety Codes Using Gröbner Bases , 1998, Des. Codes Cryptogr..

[2]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[3]  Ruud Pellikaan,et al.  Decoding Linear Error-Correcting Codes up to Half the Minimum Distance with Gröbner Bases , 2009, Gröbner Bases, Coding, and Cryptography.

[4]  Adi Shamir,et al.  Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations , 2000, EUROCRYPT.

[5]  M. Sala,et al.  Correcting errors and erasures via the syndrome variety , 2005 .

[6]  Bernd Sturmfels,et al.  Gröbner bases and Stanley decompositions of determinantal rings , 1990 .

[7]  Igor R. Shafarevich,et al.  Algebra I - basic notions of algebra , 1990, Encyclopaedia of mathematical sciences.

[8]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[9]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[10]  Moni Naor,et al.  The hardness of decoding linear codes with preprocessing , 1990, IEEE Trans. Inf. Theory.

[11]  David Eisenbud,et al.  LINEAR SECTIONS OF DETERMINANTAL VARIETIES , 1988 .

[12]  M. Sala,et al.  A commutative algebra approach to linear codes , 2009 .

[13]  Igor E. Shparlinski,et al.  Finding irreducible and primitive polynomials , 1993, Applicable Algebra in Engineering, Communication and Computing.

[14]  F. Lemmermeyer Error-correcting Codes , 2005 .

[15]  Edgar Martínez-Moro,et al.  A General Framework for Applying FGLM Techniques to Linear Codes , 2006, AAECC.

[16]  Igor E. Shparlinski Finite Fields: Theory and Computation , 1999 .

[17]  Jean-Charles Faugère,et al.  Complexity of Gröbner basis computation for Semi-regular Overdetermined sequences over F_2 with solutions in F_2 , 2002 .

[18]  K. K. Tzeng,et al.  Decoding beyond the BCH bound using multiple sets of syndrome sequences (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[19]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[20]  Russel J. Higgs,et al.  Decoding the ternary Golay code , 1993, IEEE Trans. Inf. Theory.

[21]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[22]  Pascale Charpin,et al.  Studying the locator polynomials of minimum weight codewords of BCH codes , 1992, IEEE Trans. Inf. Theory.

[23]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[24]  Tor Helleseth,et al.  Use of Grobner bases to decode binary cyclic codes up to the true minimum distance , 1994, IEEE Trans. Inf. Theory.

[25]  A. Cooper,et al.  Toward a New Method of Decoding Algebraic Codes Using Groebner Bases , 1993 .

[26]  S. Yau Mathematics and its applications , 2002 .

[27]  A. B. Cooper Finding BCH error locator polynomials in one step , 1991 .

[28]  Tor Helleseth,et al.  General principles for the algebraic decoding of cyclic codes , 1994, IEEE Trans. Inf. Theory.

[29]  Edgar Martínez-Moro,et al.  Gröbner bases and combinatorics for binary codes , 2008, Applicable Algebra in Engineering, Communication and Computing.

[30]  Carlos R. P. Hartmann Decoding beyond the BCH bound (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[31]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[32]  W. W. Peterson,et al.  Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.

[33]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[34]  M. Borges-Quintana,et al.  On a Gröbner bases structure associated to linear codes , 2005 .

[35]  Philippe Loustaunau,et al.  On the Decoding of Cyclic Codes Using Gröbner Bases , 1997, Applicable Algebra in Engineering, Communication and Computing.

[36]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[37]  T. G. Room The Geometry of Determinantal Loci , 1938 .

[38]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[39]  N. Zierler,et al.  A Class of Error-Correcting Codes in $p^m $ Symbols , 1961 .

[40]  Alexander Barg,et al.  Complexity Issues in Coding Theory , 1997, Electron. Colloquium Comput. Complex..

[41]  Massimo Caboara,et al.  The Chen-Reed-Helleseth-Truong Decoding Algorithm and the Gianni-Kalkbrenner Gröbner Shape Theorem , 2002, Applicable Algebra in Engineering, Communication and Computing.

[42]  Ian F. Blake,et al.  Algebraic-Geometry Codes , 1998, IEEE Trans. Inf. Theory.

[43]  J. Faugère,et al.  Efficient decoding of (binary) cyclic codes above the correction capacity of the code using grobner bases , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[44]  Tor Helleseth,et al.  Algebraic decoding of cyclic codes: A polynomial ideal point of view , 1993 .

[45]  Jean-Charles Faugère,et al.  On formulas for decoding binary cyclic codes , 2007, 2007 IEEE International Symposium on Information Theory.

[46]  G. R. Pellikaan,et al.  Decoding error-correcting codes with Grobner bases , 2007 .

[47]  C. R. P. Hartmann Decoding beyond the BCH bound , 1971 .

[48]  Jeanne Fitzgerald,et al.  Applications of Grobner Bases to Linear Codes. , 1996 .

[49]  Pascale Charpin,et al.  The minimum distance of some binary codes via the Newton's identities , 1990, EUROCODE.