Monte Carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires

The authors study the thermal conductivity of silicon nanowires by simulation of phonon motion and interactions through a dedicated Monte Carlo model. This model solves the Boltzmann transport equation, taking into account silicon acoustic mode dispersion curves and three phonon interactions (the normal and umklapp processes). The confinement, which limits the thermal conductivity in such structures, is described by diffuse reflection at lateral boundaries of the nanowire without any adjustment by a boundary collision time, which depends on a specularity factor. They compare simulation results to experimental measurements on similar nanostructures. A good agreement is achieved for almost all the considered diameters.

[1]  Julian D. Gale,et al.  An analytical model for the thermal conductivity of silicon nanostructures , 2005 .

[2]  D. Lacroix,et al.  Monte Carlo transient phonon transport in silicon and germanium at nanoscales , 2005, physics/0504072.

[3]  E. Pop,et al.  Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion , 2004 .

[4]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[5]  N. Mingo Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003, cond-mat/0308587.

[6]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[7]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[8]  Kang L. Wang,et al.  Modification of the three-phonon Umklapp process in a quantum wire , 2001 .

[9]  S. Volz,et al.  CLAMPED NANOWIRE THERMAL CONDUCTIVITY BASED ON PHONON TRANSPORT EQUATION , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[10]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[11]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[12]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[13]  Kang L. Wang,et al.  Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons , 1999 .

[14]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[15]  A. Majumdar Microscale Heat Conduction in Dielectric Thin Films , 1993 .

[16]  John Tarpey,et al.  Solid State , 2012 .

[17]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[18]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[19]  O. Rosso,et al.  Nonequilibrium statistical mechanics and nonlinear physics : XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics ; Mar del Plata, Argentina ; 4-8 December 2006 , 2007 .

[20]  M. Bellac,et al.  Nonequilibrium statistical mechanics , 2007, Physics Subject Headings (PhySH).