Deep learning based automatic defect identification of photovoltaic module using electroluminescence images

[1]  Peng Chen,et al.  Structure-aware-based crack defect detection for multicrystalline solar cells , 2020 .

[2]  Xiao Chen,et al.  CNN based automatic detection of photovoltaic cell defects in electroluminescence images , 2019 .

[3]  Violeta Holmes,et al.  Solar cells micro crack detection technique using state-of-the-art electroluminescence imaging , 2019 .

[4]  Vincent Christlein,et al.  Weakly Supervised Segmentation of Cracks on Solar Cells Using Normalized Lp Norm , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[5]  Kun Liu,et al.  Accurate and robust crack detection using steerable evidence filtering in electroluminescence images of solar cells , 2019, Optics and Lasers in Engineering.

[6]  Christoph J. Brabec,et al.  A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery , 2018 .

[7]  Ansgar Steland,et al.  Automatic Processing and Solar Cell Detection in Photovoltaic Electroluminescence Images , 2018, Integr. Comput. Aided Eng..

[8]  Christian Riess,et al.  Automatic Classification of Defective Photovoltaic Module Cells in Electroluminescence Images , 2018, Solar Energy.

[9]  Yuanyuan Wu,et al.  Micro-cracks detection of multicrystalline solar cell surface based on self-learning features and low-rank matrix recovery , 2018, Sensor Review.

[10]  Xuelong Li,et al.  Deep neural networks with Elastic Rectified Linear Units for object recognition , 2018, Neurocomputing.

[11]  Ramesh C. Bansal,et al.  A review of technical issues on the development of solar photovoltaic systems , 2017 .

[12]  Seeram Ramakrishna,et al.  Potential-induced degradation in photovoltaic modules: a critical review , 2017 .

[13]  Léon Bottou,et al.  Towards Principled Methods for Training Generative Adversarial Networks , 2017, ICLR.

[14]  Manoj Alwani,et al.  Fused-layer CNN accelerators , 2016, 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[15]  Meng Yang,et al.  Large-Margin Softmax Loss for Convolutional Neural Networks , 2016, ICML.

[16]  Dezso Sera,et al.  Automatic detection and evaluation of solar cell micro-cracks in electroluminescence images using matched filters , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[17]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[19]  Tae-Hee Jung,et al.  Prediction of the Potential Induced Degradation of Photovoltaic Modules Based on the Leakage Current Flowing Through Glass Laminated With Ethylene-Vinly Acetate , 2015 .

[20]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[22]  Aaron C. Courville,et al.  Generative adversarial networks , 2014, Commun. ACM.

[23]  F. R. Pazheri,et al.  A review on global renewable electricity scenario , 2014 .

[24]  D. Song,et al.  Research to the Typical Defects of Crystalline Silicon Photovoltaic Cells based on EL Images , 2013 .

[25]  Du-Ming Tsai,et al.  Defect Detection in Solar Modules Using ICA Basis Images , 2013, IEEE Transactions on Industrial Informatics.

[26]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[27]  Frederik C. Krebs,et al.  Quality control of roll-to-roll processed polymer solar modules by complementary imaging methods , 2012 .

[28]  O. Breitenstein,et al.  Can Luminescence Imaging Replace Lock-in Thermography on Solar Cells? , 2011, IEEE Journal of Photovoltaics.

[29]  J. Coello,et al.  Introducing Electroluminescence Technique in the Quality Control of Large PV Plants , 2011 .

[30]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  M. Chegaar,et al.  Solar cells parameters evaluation considering the series and shunt resistance , 2007 .

[32]  Hayato Kondo,et al.  Analytic findings in the electroluminescence characterization of crystalline silicon solar cells , 2007 .

[33]  P. Mialhe,et al.  Simple parameter extraction method for illuminated solar cells , 2006 .

[34]  Giorgio Graditi,et al.  Optical degradation of long-term, field-aged c-Si photovoltaic modules , 2005 .

[35]  Vasilis Fthenakis,et al.  Glass needs for a growing photovoltaics industry , 2015 .

[36]  Gabi Friesen,et al.  Review of Failures of Photovoltaic Modules , 2014 .

[37]  Robert W. Birkmire,et al.  Compound polycrystalline solar cells:: Recent progress and Y2 K perspective , 2001 .