Edge finishing of large turbine casings using defined multi-edge and abrasive tools in automated cells

[1]  Jiayang Zhang,et al.  Analytical model and experimental verification of Poisson burr formation in ductile metal machining , 2021 .

[2]  Anthony Beaucamp,et al.  Compliant grinding and polishing: A review , 2020 .

[3]  L. N. L. de Lacalle,et al.  Isotropic finishing of austempered iron casting cylindrical parts by roller burnishing , 2020, The International Journal of Advanced Manufacturing Technology.

[4]  Yu-Ting Tsai,et al.  Utilization of a reinforcement learning algorithm for the accurate alignment of a robotic arm in a complete soft fabric shoe tongues automation process , 2020 .

[5]  Lihui Wang,et al.  Smart manufacturing process and system automation – A critical review of the standards and envisioned scenarios , 2020 .

[6]  Prateep Misra,et al.  Digital twin: current scenario and a case study on a manufacturing process , 2020, The International Journal of Advanced Manufacturing Technology.

[7]  Lihui Wang,et al.  Industrial robotic machining: a review , 2019, The International Journal of Advanced Manufacturing Technology.

[8]  S. Kannan,et al.  Experimental investigation of surface integrity during abrasive edge profiling of nickel-based alloy , 2019, Journal of Manufacturing Processes.

[9]  Li Da Xu,et al.  Industry 4.0: state of the art and future trends , 2018, Int. J. Prod. Res..

[10]  J. Paulo Davim,et al.  Mechanical deburring and edge-finishing processes for aluminum parts—a review , 2018 .

[11]  Fei Tao,et al.  Digital twin-driven product design, manufacturing and service with big data , 2017, The International Journal of Advanced Manufacturing Technology.

[12]  Jyh-Horng Chou,et al.  Data-Driven Approach to Using Uniform Experimental Design to Optimize System Compensation Parameters for an Auto-Alignment Machine , 2018, IEEE Access.

[13]  Fritz Klocke,et al.  Robotic finishing process – An extrusion die case study , 2015 .

[14]  Jyh-Horng Chou,et al.  Optimized Positional Compensation Parameters for Exposure Machine for Flexible Printed Circuit Board , 2015, IEEE Transactions on Industrial Informatics.

[15]  Jean-Marc Linares,et al.  Adaptation of machining toolpath to distorted geometries: application to remove a constant thickness on rough casting prosthesis , 2014 .

[16]  L. N. López de Lacalle,et al.  Elimination of surface spiral pattern on brake discs , 2014 .

[17]  T. Selvaraj,et al.  Vision Assisted Robotic Deburring of Edge Burrs in Cast Parts , 2014 .

[18]  Sangkee Min,et al.  Burrs—Analysis, control and removal , 2009 .

[19]  Daehie Hong,et al.  Coordination control of an active pneumatic deburring tool , 2008 .

[20]  Antonio Visioli,et al.  A mechatronic approach for robotic deburring , 2007 .

[21]  D. Dumur,et al.  High-performance NC for high-speed machining by means of polynomial trajectories , 2013, 1309.3732.

[22]  Yoshimi Takeuchi,et al.  Development of robot teaching support devices to automate deburring and finishing works in casting , 2004 .

[23]  Pi-Cheng Tung,et al.  Trajectory planning for automated robotic deburring on an unknown contour , 2000 .

[24]  M. A. Mannan,et al.  MACHINABILITY OF NICKEL-BASED HIGH TEMPERATURE ALLOYS , 2000 .

[25]  S. S. Pande,et al.  The role of deburring in manufacturing: A state-of-the-art survey , 1994 .