Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation☆

Highlights • An automatic segmentation method is proposed for dynamic contrast enhanced MRI• We introduce perfusion-supervoxels to over-segment DCE-MRI volumes, and pieces-ofparts to add anatomical constraints to supervoxel segmentations• This method achieves promising results for the underexplored area of automatic rectal tumour segmentation from DCE-MRI scans.

[1]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[2]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[3]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[4]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[5]  M. Weiser,et al.  Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer , 2012, European Radiology.

[6]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[7]  G Brown,et al.  Techniques and trouble-shooting in high spatial resolution thin slice MRI for rectal cancer. , 2005, The British journal of radiology.

[8]  Steve Halligan,et al.  Quantitative assessment of colorectal cancer tumor vascular parameters by using perfusion CT: influence of tumor region of interest. , 2008, Radiology.

[9]  Michael Brady,et al.  MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration , 2012, Medical Image Anal..

[10]  Michael Brady,et al.  Learning New Parts for Landmark Localization in Whole-Body CT Scans , 2014, IEEE Transactions on Medical Imaging.

[11]  Maryellen L. Giger,et al.  A Fuzzy C-Means (FCM)-Based Approach for Computerized Segmentation of Breast Lesions in Dynamic Contrast-Enhanced MR Images1 , 2006 .

[12]  Jianhua Yang,et al.  Superpixel-Based Segmentation of Glioblastoma Multiforme from Multimodal MR Images , 2013, MBIA.

[13]  Andrew Zisserman,et al.  OBJ CUT , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Eldad Haber,et al.  Intensity Gradient Based Registration and Fusion of Multi-modal Images , 2006, MICCAI.

[15]  M. Giger,et al.  A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. , 2006, Academic radiology.

[16]  Erlend Hodneland,et al.  Segmentation-Driven Image Registration-Application to 4D DCE-MRI Recordings of the Moving Kidneys , 2014, IEEE Transactions on Image Processing.

[17]  Michael Brady,et al.  Personalised Estimation of the Arterial Input Function for Improved Pharmacokinetic Modelling of Colorectal Cancer Using dceMRI , 2013, Abdominal Imaging.

[18]  E. Haber,et al.  Intensity Gradient Based Registration and Fusion of Multi-modal Images , 2007, Methods of Information in Medicine.

[19]  Vicky Goh,et al.  Functional imaging of colorectal cancer angiogenesis. , 2007, The Lancet. Oncology.

[20]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[21]  David Atkinson,et al.  Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI , 2014, Medical Image Anal..

[22]  Michael Brady,et al.  Automated Colorectal Tumour Segmentation in DCE-MRI Using Supervoxel Neighbourhood Contrast Characteristics , 2014, MICCAI.

[23]  Laurent Risser,et al.  An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration , 2014, Medical Image Anal..

[24]  Stuart Crozier,et al.  Fully automatic lesion segmentation in breast MRI using mean‐shift and graph‐cuts on a region adjacency graph , 2014, Journal of magnetic resonance imaging : JMRI.

[25]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[26]  Kari Tanderup,et al.  Tracer kinetic model selection for dynamic contrast-enhanced magnetic resonance imaging of locally advanced cervical cancer , 2014, Acta oncologica.

[27]  Joachim M. Buhmann,et al.  Automatic Detection and Segmentation of Crohn's Disease Tissues From Abdominal MRI , 2013, IEEE Transactions on Medical Imaging.

[28]  Stefano Soatto,et al.  Class segmentation and object localization with superpixel neighborhoods , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[29]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  L. Costaridou,et al.  Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis. , 2010, The British journal of radiology.

[31]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.