Xenografted Adult Human Mesenchymal Stem Cells Provide a Platform for Sustained Biological Pacemaker Function in Canine Heart
暂无分享,去创建一个
Zhongju Lu | Michael R Rosen | M. Rosen | P. Danilo | B. Lorell | R. Robinson | P. Brink | A. B. Rosen | I. Potapova | R. Mathias | I. Cohen | A. Plotnikov | M. Szabolcs | Iryna N. Shlapakova | Peter Danilo | Matthias J Szabolcs | Richard B Robinson | Ira S Cohen | Alexei N Plotnikov | Peter R Brink | Irina A Potapova | Beverly H Lorell | Iryna Shlapakova | Amy B Rosen | Richard T Mathias | Zhongju Lu
[1] J. Hare,et al. Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy , 2005, Basic Research in Cardiology.
[2] M. Biel,et al. A family of hyperpolarization-activated mammalian cation channels , 1998, Nature.
[3] O. Koç,et al. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. , 2005, Experimental hematology.
[4] K. Chien. Stem cells: Lost in translation , 2004, Nature.
[5] E. Guinan,et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation , 2003, Transplantation.
[6] Richard O Hynes,et al. Guidelines for human embryonic stem cell research , 2005, Nature Biotechnology.
[7] F. Welt,et al. Cell therapy for acute myocardial infarction: curb your enthusiasm? , 2006, Circulation.
[8] Eric R Kandel,et al. Identification of a Gene Encoding a Hyperpolarization-Activated Pacemaker Channel of Brain , 1998, Cell.
[9] Michael R Rosen,et al. Expression and Function of a Biological Pacemaker in Canine Heart , 2003, Circulation.
[10] Michael R Rosen,et al. Biological Pacemaker Implanted in Canine Left Bundle Branch Provides Ventricular Escape Rhythms That Have Physiologically Acceptable Rates , 2004, Circulation.
[11] W. Aird,et al. Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. , 1998, The Journal of clinical investigation.
[12] C. Lau,et al. Bioartificial Sinus Node Constructed via In Vivo Gene Transfer of an Engineered Pacemaker HCN Channel Reduces the Dependence on Electronic Pacemaker in a Sick-Sinus Syndrome Model , 2006, Circulation.
[13] Junyuan Gao,et al. Human Mesenchymal Stem Cells as a Gene Delivery System to Create Cardiac Pacemakers , 2004, Circulation research.
[14] C. Carlo-Stella,et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. , 2002, Blood.
[15] M. O. Speidel,et al. Metallurgy: High nickel release from 1- and 2-euro coins , 2002, Nature.
[16] M. Josephson,et al. Molecular enhancement of porcine cardiac chronotropy , 2001, Heart.
[17] E. Azene,et al. Gene Transfer of a Synthetic Pacemaker Channel Into the Heart: A Novel Strategy for Biological Pacing , 2006, Circulation.
[18] M. Rosen,et al. Wild-Type and Mutant HCN Channels in a Tandem Biological-Electronic Cardiac Pacemaker , 2006, Circulation.
[19] Michael R Rosen,et al. Genes, stem cells and biological pacemakers. , 2004, Cardiovascular research.
[20] M. Rosen. Are Stem Cells Drugs?: The Regulation of Stem Cell Research and Development , 2006, Circulation.
[21] Rona Shofti,et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells , 2004, Nature Biotechnology.