Toward Perfect Light Trapping in Thin‐Film Photovoltaic Cells: Full Utilization of the Dual Characteristics of Light

[1]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[2]  Harry A. Atwater,et al.  Highly efficient GaAs solar cells by limiting light emission angle , 2013, Light: Science & Applications.

[3]  Viktor Andersson,et al.  Folded reflective tandem polymer solar cell doubles efficiency , 2007 .

[4]  Olle Inganäs,et al.  Trapping light with micro lenses in thin film organic photovoltaic cells. , 2008, Optics express.

[5]  Luping Yu,et al.  Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. , 2013, Nano letters.

[6]  Wei E. I. Sha,et al.  Efficient Inverted Polymer Solar Cells with Directly Patterned Active Layer and Silver Back Grating , 2012 .

[7]  Kitson,et al.  Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. , 1996, Physical review. B, Condensed matter.

[8]  Peter Bienstman,et al.  Angle insensitive enhancement of organic solar cells using metallic gratings , 2011 .

[9]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[10]  Viktor Andersson,et al.  Optical modeling of a folded organic solar cell , 2008 .

[11]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[12]  Su Shen,et al.  Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures , 2014, Scientific Reports.

[13]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[14]  K. Hermans,et al.  Quantification and Validation of the Efficiency Enhancement Reached by Application of a Retroreflective Light Trapping Texture on a Polymer Solar Cell , 2013 .

[15]  Jung‐Yong Lee,et al.  Multi-scale and angular analysis of ray-optical light trapping schemes in thin-film solar cells: micro lens array, V-shaped configuration, and double parabolic trapper. , 2013, Optics express.

[16]  Jung-Yong Lee,et al.  Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. , 2014, ACS nano.

[17]  Lei Zhang,et al.  Photonic crystal geometry for organic solar cells. , 2009, Nano letters.

[18]  Jung-Yong Lee,et al.  The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. , 2010, Optics express.

[19]  M. Green,et al.  The limiting efficiency of silicon solar cells under concentrated sunlight , 1986, IEEE Transactions on Electron Devices.

[20]  Nicolas C. Pégard,et al.  Wrinkles and deep folds as photonic structures in photovoltaics , 2012, Nature Photonics.

[21]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[22]  O. Inganäs,et al.  Light trapping with total internal reflection and transparent electrodes in organic photovoltaic devices , 2012 .

[23]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[24]  Volker Wittwer,et al.  Diffraction gratings and buried nano-electrodes—architectures for organic solar cells , 2004 .

[25]  Wei You,et al.  A universal optical approach to enhancing efficiency of organic-based photovoltaic devices , 2012 .

[26]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[27]  Fengxian Xie,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012, Advanced materials.

[28]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[29]  Bumjoon J. Kim,et al.  Nanoimprinting-induced nanomorphological transition in polymer solar cells: enhanced electrical and optical performance. , 2015, ACS nano.

[30]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[31]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[32]  C. Ballif,et al.  Light trapping effects in thin film silicon solar cells , 2009 .

[33]  E. Yablonovitch Statistical ray optics , 1982 .

[34]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[35]  Robert P. H. Chang,et al.  Polymer solar cells with enhanced fill factors , 2013, Nature Photonics.

[36]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[37]  Donggeon Han,et al.  Random and V-groove texturing for efficient light trapping in organic photovoltaic cells , 2013 .

[38]  Zakya H. Kafafi,et al.  Transparent electrodes based on two-dimensional Ag nanogrids and double one-dimensional Ag nanogratings for organic photovoltaics , 2014 .

[39]  Efficient light trapping in inverted polymer solar cells by a randomly nanostructured electrode using monodispersed polymer nanoparticles. , 2013, Nanoscale.

[40]  Su Shen,et al.  Enhanced Light Harvesting in Organic Solar Cells Featuring a Biomimetic Active Layer and a Self‐Cleaning Antireflective Coating , 2014 .

[41]  Stephen R. Forrest,et al.  Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes , 2000 .

[42]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[43]  J. Xue,et al.  Enhancing light harvesting in organic solar cells with pyramidal rear reflectors , 2011 .

[44]  R Winston,et al.  Nonconventional optical systems and the brightness theorem. , 1982, Applied optics.