Cotton Cellulose-CdTe Quantum Dots Composite Films with Inhibition of Biofilm-Forming S. aureus

A cellulose-cadmium (Cd)-tellurium (TE) quantum dots (QDs) composite film was successfully synthesized by incorporating CdTe QDs onto a cellulose matrix derived from waste cotton linters. Cellulose-CdTe QDs composite film was characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The antibacterial activity of the prepared composite film was investigated using the multidrug-resistance (MTR) Staphylococcus aureus bacteria. In vitro antibacterial assays demonstrated that CdTe QDs composite film can efficiently inhibit biofilm formation. Our results showed that the cellulose-CdTe QDs composite film is a promising candidate for biomedical applications including wound dressing, medical instruments, burn treatments, implants, and other biotechnology fields.

[1]  A. Seifalian,et al.  Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging , 2010, Nano reviews.

[2]  F. DeLeo,et al.  Pathogenesis of Staphylococcus aureus abscesses. , 2015, The American journal of pathology.

[3]  Mansor B. Ahmad,et al.  Synthesis, Antibacterial and Thermal Studies of Cellulose Nanocrystal Stabilized ZnO-Ag Heterostructure Nanoparticles , 2013, Molecules.

[4]  Yudong Zheng,et al.  Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo , 2014, Biomedical materials.

[5]  Xudong Wang,et al.  Cellulose-Based Nanomaterials for Energy Applications. , 2017, Small.

[6]  J. Luong,et al.  Green Strategy Guided by Raman Spectroscopy for the Synthesis of Ammonium Carboxylated Nanocrystalline Cellulose and the Recovery of Byproducts , 2013 .

[7]  C. R. Leal,et al.  Bacterial cellulose: a versatile biopolymer for wound dressing applications , 2019, Microbial biotechnology.

[8]  J. Fink-Gremmels,et al.  Biofilms: a role in recurrent mastitis infections? , 2006, Veterinary journal.

[9]  Zhisong Lu,et al.  Mechanism of antimicrobial activity of CdTe quantum dots. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[10]  Lucian A. Lucia,et al.  A Novel Cellulose Nanocrystals-Based Approach To Improve the Mechanical Properties of Recycled Paper , 2013 .

[11]  Yuekun Lai,et al.  A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications , 2017 .

[12]  Hicham A. Chibli,et al.  Antimicrobial activity and cellular toxicity of nanoparticle–polymyxin B conjugates , 2011, Nanotechnology.

[13]  M. Guida,et al.  An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin , 2016, International journal of nanomedicine.

[14]  Vance G. Fowler,et al.  Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management , 2015, Clinical Microbiology Reviews.

[15]  W. Vermerris,et al.  Antimicrobial Nanomaterials Derived from Natural Products—A Review , 2016, Materials.

[16]  P. Lens,et al.  Microbial synthesis of chalcogenide semiconductor nanoparticles: a review , 2015, Microbial biotechnology.

[17]  Zhiping Luo,et al.  Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes. , 2012, Colloids and surfaces. B, Biointerfaces.

[18]  A. Hamood,et al.  Preparation of chitin‐CdTe quantum dots films and antibacterial effect on Staphylococcus aureus and Pseudomonas aeruginosa , 2017 .

[19]  Marek Kawecki,et al.  The future prospects of microbial cellulose in biomedical applications. , 2007, Biomacromolecules.

[20]  Rohit Srivastava,et al.  Highly luminescent chitosan-L-cysteine functionalized CdTe quantum dots film: synthesis and characterization. , 2013, Carbohydrate polymers.

[21]  L. Halaoui,et al.  Quantum-Confined CdTe Films Deposited by SILAR and Their Photoelectrochemical Stability in the Presence of Se2– as a Hole Scavenger , 2014 .

[22]  J. Bras,et al.  Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane , 2016, Cellulose.

[23]  C. Shi,et al.  Biofilm formation and antibiotic resistance pattern of dominant Staphylococcus aureus clonal lineages in China , 2017 .

[24]  Huiru Tang,et al.  Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose , 2012 .

[25]  Mahdi Naseri-Nosar,et al.  Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. , 2018, Carbohydrate polymers.

[26]  Yan Mei,et al.  Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. , 2012, ACS applied materials & interfaces.

[27]  Canhui Lu,et al.  Mechanochemically activated waste‐derived cellulose as a novel functional additive to enhance melt processability and mechanical properties of poly(vinyl alcohol) , 2014 .

[28]  Asad U. Khan,et al.  Amplification of mecA gene in multi-drug resistant Staphylococcus aureus strains from hospital personnel. , 2007, Journal of infection in developing countries.

[29]  H. Manuspiya,et al.  A critical review on cellulose: From fundamental to an approach on sensor technology , 2015 .

[30]  M. Fathi,et al.  Application of Cellulosic Nanofibers in Food Science Using Electrospinning and Its Potential Risk. , 2015, Comprehensive reviews in food science and food safety.

[31]  K. Paivasaari,et al.  High refractive index chalcogenide glass for photonic crystal applications. , 2007, Optics express.

[32]  A. Potthast,et al.  Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. , 2015, Biotechnology advances.

[33]  S. Khan,et al.  Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model , 2017 .

[34]  D. Gould,et al.  Staphylococcus aureus: a review of the literature. , 1995, Journal of clinical nursing.

[35]  D. Bravo,et al.  Enhanced Glutathione Content Allows the In Vivo Synthesis of Fluorescent CdTe Nanoparticles by Escherichia coli , 2012, PloS one.

[36]  Katrin Roemhild,et al.  Novel bioactive amino-functionalized cellulose nanofibers. , 2013, Macromolecular rapid communications.

[37]  Eric Hequet,et al.  Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis , 2008 .

[38]  Q. Wei,et al.  Coaxial Electrospun Cellulose-Core Fluoropolymer-Shell Fibrous Membrane from Recycled Cigarette Filter as Separator for High Performance Lithium-Ion Battery , 2015 .

[39]  Oleksandr Voznyy,et al.  Mixed-quantum-dot solar cells , 2017, Nature Communications.

[40]  R. Renganathan,et al.  In vitro antioxidant and antimicrobial activities of Merremia emarginata using thio glycolic acid-capped cadmium telluride quantum dots. , 2013, Colloids and surfaces. B, Biointerfaces.

[41]  Henry F. Chambers,et al.  Waves of resistance: Staphylococcus aureus in the antibiotic era , 2009, Nature Reviews Microbiology.

[42]  Jidong Yang,et al.  Glutathione-capped CdTe quantum dots for the determination of fleroxacin with dual-wavelength fluorescence signals , 2014 .

[43]  Rebekah Drezek,et al.  Water-soluble quantum dots for biomedical applications. , 2006, Biochemical and biophysical research communications.

[44]  H. Abdelhamid,et al.  Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. , 2013, Journal of materials chemistry. B.

[45]  N. Dimitrijević,et al.  Interfacial charge transfer between CdTe quantum dots and gram negative vs gram positive bacteria. , 2010, Environmental science & technology.

[46]  Canhui Lu,et al.  Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures , 2015 .

[47]  M. Jaroniec,et al.  Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths , 2016, Cellulose.

[48]  Rui Xiong,et al.  Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics , 2012, Cellulose.

[49]  Suhas,et al.  Cellulose: A review as natural, modified and activated carbon adsorbent. , 2016, Bioresource technology.

[50]  T. Iwamoto,et al.  Norgestimate inhibits staphylococcal biofilm formation and resensitizes methicillin-resistant Staphylococcus aureus to β-lactam antibiotics , 2017, npj Biofilms and Microbiomes.

[51]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[52]  S. Ribeiro,et al.  Antimicrobial bacterial cellulose-silver nanoparticles composite membranes , 2011 .

[53]  P. Nagpal,et al.  Photoexcited quantum dots for killing multidrug-resistant bacteria. , 2016, Nature materials.

[54]  D. Bravo,et al.  Biomimetic, Mild Chemical Synthesis of CdTe-GSH Quantum Dots with Improved Biocompatibility , 2012, PloS one.

[55]  G Renzini,et al.  [Mechanisms of antibiotic resistance in Staphylococcus aureus]. , 1974, Antibiotica.

[56]  I. Mondragon,et al.  Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. , 2013, ACS applied materials & interfaces.

[57]  C. Dahlström,et al.  One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties , 2017 .

[58]  Qingsheng Wu,et al.  Cooperative antimicrobial activity of CdTe quantum dots with rocephin and fluorescence monitoring for Escherichia coli. , 2011, Journal of colloid and interface science.

[59]  Jianguo Huang,et al.  Hierarchical-structured anatase-titania/cellulose composite sheet with high photocatalytic performance and antibacterial activity. , 2015, Chemistry.

[60]  J. Colmer-Hamood,et al.  An Organoselenium Compound Inhibits Staphylococcus aureus Biofilms on Hemodialysis Catheters In Vivo , 2011, Antimicrobial Agents and Chemotherapy.

[61]  Lina Zhang,et al.  Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. , 2015, ACS applied materials & interfaces.

[62]  P. Kamat Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. , 2013, The journal of physical chemistry letters.

[63]  Nan Ma,et al.  An overview of recent advances in quantum dots for biomedical applications. , 2014, Colloids and surfaces. B, Biointerfaces.

[64]  Noureddine Abidi,et al.  Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. , 2014, Carbohydrate polymers.

[65]  D. Missiakas,et al.  Pathogenesis of Staphylococcus aureus Bloodstream Infections. , 2016, Annual review of pathology.

[66]  A. Fontes,et al.  CdTe quantum dots as fluorescent probes to study transferrin receptors in glioblastoma cells. , 2016, Biochimica et biophysica acta.