Convex Drawings of 3-Connected Plane Graphs

AbstractWe use Schnyder woods of 3-connected planar graphs to produce convex straight-line drawings on a grid of size $(n-2-\Delta)\times (n-2-\Delta).$ The parameter $\Delta\geq 0$ depends on the Schnyder wood used for the drawing. This parameter is in the range $0 \leq \Delta\leq {n}/{2}-2.$ The algorithm is a refinement of the face-counting algorithm; thus, in particular, the size of the grid is at most $(f-2)\times(f-2).$ The above bound on the grid size simultaneously matches or improves all previously known bounds for convex drawings, in particular Schnyder's and the recent Zhang and He bound for triangulations and the Chrobak and Kant bound for 3-connected planar graphs. The algorithm takes linear time. The drawing algorithm has been implemented and tested. The expected grid size for the drawing of a random triangulation is close to $\frac{7}{8}n\times\frac{7}{8}n.$ For a random 3-connected plane graph, tests show that the expected size of the drawing is $\frac{3}{4}n\times\frac{3}{4}n.$

[1]  F. Leighton,et al.  Drawing Planar Graphs Using the Canonical Ordering , 1996 .

[2]  Xin He Grid Embedding of 4-Connected Plane Graphs , 1997, Discret. Comput. Geom..

[3]  Nicolas Bonichon,et al.  Planar Graphs, via Well-Orderly Maps and Trees , 2004, WG.

[4]  Ezra Miller,et al.  Planar graphs as minimal resolutions of trivariate monomial ideals , 2002, Documenta Mathematica.

[5]  Stefan Felsner,et al.  Geodesic Embeddings and Planar Graphs , 2003, Order.

[6]  Xin He,et al.  Compact Visibility Representation and Straight-Line Grid Embedding of Plane Graphs , 2003, WADS.

[7]  János Pach,et al.  Small sets supporting fary embeddings of planar graphs , 1988, STOC '88.

[8]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[9]  Norihide Tokushige,et al.  The Minimum Area of Convex Lattice n-Gons , 2004, Comb..

[10]  W. T. Tutte Convex Representations of Graphs , 1960 .

[11]  Nicolas Bonichon,et al.  Wagner's Theorem on Realizers , 2002, ICALP.

[12]  Gilles Schaeffer,et al.  Random sampling of large planar maps and convex polyhedra , 1999, STOC '99.

[13]  Carsten Thomassen,et al.  Planarity and duality of finite and infinite graphs , 1980, J. Comb. Theory B.

[14]  Jovisa D. Zunic,et al.  On the Maximal Number of Edges of Convex Digital Polygons Included into an m x m -Grid , 1995, J. Comb. Theory A.

[15]  Swastik Kopparty,et al.  TO PLANAR GRAPHS , 2010 .

[16]  Ôôöøøøøóò Óó,et al.  Strictly Convex Drawings of Planar Graphs , 2022 .

[17]  Roberto Tamassia,et al.  Output-Sensitive Reporting of Disjoint Paths , 1996, Algorithmica.

[18]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[19]  W. T. Tutte How to Draw a Graph , 1963 .

[20]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[21]  Stefan Felsner,et al.  Convex Drawings of Planar Graphs and the Order Dimension of 3-Polytopes , 2001, Order.

[22]  Stefan Felsner,et al.  Lattice Structures from Planar Graphs , 2004, Electron. J. Comb..

[23]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .

[24]  M. Chrobak,et al.  Convex Grid Drawings of 3-Connected Planar Graphs , 1997, Int. J. Comput. Geom. Appl..

[25]  Stefan Felsner,et al.  Geometric Graphs and Arrangements , 2004 .

[26]  W. Schnyder Planar graphs and poset dimension , 1989 .

[27]  Marek Chrobak,et al.  Convex drawings of graphs in two and three dimensions (preliminary version) , 1996, SCG '96.

[28]  Hsueh-I Lu,et al.  Improved Compact Visibility Representation of Planar Graph via Schnyder's Realizer , 2003, STACS.

[29]  Robert E. Tarjan,et al.  Rectilinear planar layouts and bipolar orientations of planar graphs , 1986, Discret. Comput. Geom..

[30]  Shin-Ichi Nakano,et al.  Grid Drawings of 4-Connected Plane Graphs , 2001, Discret. Comput. Geom..

[31]  Stefan Felsner,et al.  Convex Drawings of 3-Connected Plane Graphs , 2004, SODA '05.