暂无分享,去创建一个
[1] Arnold Shapiro,et al. Obstructions to the Imbedding of a Complex in a Euclidean Space.: I. The First Obstruction , 1957 .
[2] E. R. Kampen. Berichtigung: zu: „Komplexe in euklidischen Räumen“ , 1933 .
[3] Sinisa T. Vrecica,et al. The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory, Ser. A.
[4] Jirí Matousek,et al. Hardness of embedding simplicial complexes in Rd , 2009, SODA.
[5] J. L. Bryant. Piecewise Linear Topology , 2001 .
[6] J. W. Alexander. INTERSECTIONS AND TRANSFORMATIONS OF COMPLEXES AND MANIFOLDS , 2010 .
[7] E. C. Zeeman,et al. Transversality for piecewise linear manifolds , 1967 .
[8] Uli Wagner,et al. Eliminating Tverberg Points, I. An Analogue of the Whitney Trick , 2014, SoCG.
[9] Charles Terence Clegg Wall,et al. Piecewise linear bundles in the stable range , 1965 .
[10] K. S. Sarkaria. A one-dimensional Whitney trick and Kuratowski’s graph planarity criterion , 1991 .
[11] A. Skopenkov,et al. Embeddings of homology equivalent manifolds with boundary , 2006, 1207.1326.
[12] Mikhail Skopenkov,et al. ON APPROXIMABILITY BY EMBEDDINGS OF CYCLES IN THE PLANE , 2003, 0808.1187.
[13] A. Skopenkov. Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.
[14] C. Weber. Plongements de polyèdres dans le domaine métastable , 1967 .
[15] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[16] I. Bárány,et al. A Colored Version of Tverberg's Theorem , 1992 .
[17] K. S. Sarkaria. Tverberg partitions and Borsuk–Ulam theorems , 2000 .
[18] Wen-tsün Wu,et al. A theory of imbedding immersion , and isotopy of polytopes in a euclidean space , 1965 .
[19] R. Živaljević,et al. User's guide to equivariant methods in combinatorics. II. , 1998 .
[20] Zoltán Füredi,et al. On the number of halving planes , 1989, SCG '89.
[21] R. Ho. Algebraic Topology , 2022 .
[22] Jack Segal,et al. Embeddings of polyhedra in Rm and the deleted product obstruction , 1998 .
[23] Dušan Repovš,et al. New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .
[24] C. Rourke,et al. Introduction to Piecewise-Linear Topology , 1972 .
[25] Michael H. Freedman,et al. Van Kampen’s embedding Obstruction is incomplete for $2$-Complexes in $\rz^{4}$ , 1994 .
[26] Michael J. Pelsmajer,et al. Removing even crossings , 2007, J. Comb. Theory, Ser. B.
[27] Murad Ozaydin,et al. Equivariant Maps for the Symmetric Group , 1987 .
[28] C. Weber,et al. L’élimination des points doubles dans le cas combinatoire , 1966 .
[29] Arne Storjohann,et al. Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.
[30] J. Hudson,et al. Concordance, Isotopy, and Diffeotopy , 1970 .
[31] Benjamin Matschke,et al. Equivariant topology methods in discrete geometry , 2011 .
[32] Jack Segal,et al. Quasi embeddings and embeddings of polyhedra in Rm , 1992 .
[33] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[34] I. Bárány,et al. On a common generalization of Borsuk's and Radon's theorem , 1979 .
[35] J. Hudson,et al. Extending Piecewise‐Linear Isotopies , 1966 .
[36] E. R. Kampen. Komplexe in euklidischen Räumen , 1933 .
[37] Ch. Chojnacki,et al. Über wesentlich unplättbare Kurven im dreidimensionalen Raume , 1934 .
[38] E. C. Zeeman,et al. Seminar on combinatorial topology , 1963 .
[39] Florian Frick,et al. Tverberg plus constraints , 2014, 1401.0690.
[40] Rolf Schneider,et al. Problems in Geometric Convexity , 1979 .
[41] K. S. Sarkaria. A generalized van Kampen-Flores theorem , 1991 .
[42] Jean-Guillaume Dumas,et al. On Efficient Sparse Integer Matrix Smith Normal Form Computations , 2001, J. Symb. Comput..
[43] Pavle V. M. Blagojevi'c,et al. Optimal bounds for the colored Tverberg problem , 2009, 0910.4987.
[44] Florian Frick,et al. Counterexamples to the topological Tverberg conjecture , 2015 .
[45] Mark de Longueville. Notes on the topological Tverberg theorem , 2001, Discret. Math..
[46] Pavle V. M. Blagojevic,et al. Using equivariant obstruction theory in combinatorial geometry , 2006 .
[47] Marek Krcál,et al. Algorithmic Solvability of the Lifting-Extension Problem , 2013, Discrete & Computational Geometry.
[48] S. Melikhov,et al. The van Kampen obstruction and its relatives , 2006, math/0612082.
[49] Imre Bárány,et al. On a Topological Generalization of a Theorem of Tverberg , 1981 .
[50] A. Volovikov,et al. On the van Kampen-Flores theorem , 1996 .
[51] Michael J. Pelsmajer,et al. Removing Independently Even Crossings , 2009, SIAM J. Discret. Math..
[52] Mark Giesbrecht,et al. Fast computation of the Smith form of a sparse integer matrix , 2002, computational complexity.
[53] W. T. Tutte. Toward a theory of crossing numbers , 1970 .